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Abstract 

Mathematical models of car-following, lane changing, and gap acceptance are mostly 

descriptive in nature and lack decision making or error tolerance. Including additional driver 

information with respect to behavior and cognitive characteristics would account for these 

lacking parameters and incorporate a human aspect to these models. Car-following, particularly 

in relation to the intelligent driver model (IDM), is the primary component of this research. The 

major objectives of this research are to investigate how psychophysiological constructs can be 

modeled to replicate car-following behavior, and to correlate subjective measures of behavior 

and aggressiveness with actual car-following behavior. To accomplish the objectives the 

following tasks are required: perform a thorough literature review, develop the methodological 

framework, set up a driving simulator study to collect relevant data, classify drivers with respect 

to their static and behavioral traits, and calibrate the IDM.  

This report presents the first part of this study, and includes the thorough literature 

review, and the methodological framework that will be used to incorporate biobehavioral 

parameters into the IDM. The data collection plan to execute the methodology involves 

collecting driving data from 90 participants using a driving simulator, and this will be completed 

in the second phase of the project. Various car-following tasks will be performed at multiple task 

difficulties. This will provide data on compensatory and performance effects experienced by 

drivers. Modification to the IDM will be made to incorporate any observed trends between driver 

classes, behavior, and performance.   
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Chapter 1 Introduction 

1.1 Problem Statement 

Driver behavior is a significant contributor to traffic operational quality and safety, and it 

is also an important element in traffic simulation tools. These tools allow for driver variability 

through various distributions. In addition, the mathematical models of car-following, lane 

changing, and gap acceptance are mostly descriptive in nature. As a result, these tools do not 

accurately describe traffic phenomena such as breakdowns or capacity drop and consequently, 

calibration efforts to field data are needed. Also, the majority of tools are “collision-free” by 

default, therefore, estimating surrogate safety measures based on these models would be 

inaccurate. As such, additional information of driver behavior from the cognitive sciences could 

significantly enhance the ability of existing models and simulator to replicate field conditions.  

Biobehavioral aspects encompass the variability of cognitive workload and situation 

awareness with the driving behavior of individuals. In this study, variables such as preferred 

headway, speed, acceleration, and deceleration, are used together with variations in mental 

workload, changes in situation awareness, and static driver properties to categorize individuals. 

Although the exact definition for driver behavior will be the outcome of this study, drivers can 

be generally grouped into three main categories, conservative, average, and aggressive. Where 

average drivers represent the characteristics exhibited by the majority of the sample population, 

and conservative and aggressive drivers represent the lower and upper quartiles of the sample 

population, respectively.  

1.2 Objectives 

The major goals of this research are to investigate how psychophysiological constructs 

can be modeled to replicate car-following behavior, and to correlate subjective measures of 
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behavior and aggressiveness with actual car-following behavior. This research is divided in two 

parts. Part I, which is the focus of this research report, summarizes the literature review 

comprising of techniques and past studies aimed at incorporating behavioral aspects into traffic 

models. It also includes the methodological setup of the experiments to be conducted with the 

use of a driving simulator, as well as survey questionnaires related to driver behavior. Part II of 

this research project will execute the data collection and model development, and will commence 

with the completion of Part I.  

The specific tasks to be carried out in both parts of this research project are as follows: 

• Conduct a thorough literature review comprising of techniques and past studies aimed 

at incorporating behavioral aspects into traffic models. Including parameters used to 

categorize drivers into conservative, average, and aggressive; 

• Develop the methodological framework to incorporate behavioral aspects into an 

existing car-following model (i.e., the IDM); 

• Classify drivers by self-reported/subjective measures (PANAS, decision making, 

NASA-TLX (Task load index), attention and executive, and screening 

questionnaires), biobehavioral measures (level of activation, heart rate, pupil dilation, 

and gaze fixation), and performance measures (speed, acceleration, headway, 

standard deviation (SD) steering wheel angle, and SD of lateral position); 

• Collect static and dynamic behavioral parameters using a driving simulator study with 

90 drivers;  

• Analyze data to establish activation level, compensation, and performance thresholds 

for the different types of driver classifications (conservative, average, and 

aggressive); and 
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• Incorporate attained thresholds into the intelligent driver model (IDM) and compare 

the predictive capability to the unaltered IDM. Validate the feasibility of the modified 

IDM using data not used for model development. 

1.3 Outline of the Report 

The report starts by presenting the problem statement and objectives in the first chapter. 

Chapter 2 presents the literature review findings on car-following models, behavioral 

components such as situation awareness, workload, and level of activation, experimental 

techniques, and existing biobehavioral methodologies. The methodological plan is described in 

Chapter 3, while the data collection plan is presented in Chapter 4. Finally, a short summary is 

presented along with the future schedule. 
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Chapter 2 Literature Review 

This section provides a detailed review of some of the existing car-following models, 

especially those that have been used to incorporate some sort of biobehavioral architecture. This 

chapter also includes literature related to the definitions of several biobehavioral parameters, 

their measurement methods, and their relationship. Literature were obtained from several journal 

articles, theses, and publications. Online resources such as Google Scholar, ScienceDirect, 

University of Kansas (KU) Library resources, WorldCat, and Transportation Research 

International Documentation (TRID) were used.  

2.1 Driver Behavior Models 

Driver behavior models have significantly evolved from the first established Greenshields 

single regime model. The Greenshields model is a starting point for several other more complex 

traffic flow models such as the Pipes, Lighthill–Whitham–Richards (LWR), Gas kinetic (GK), 

Edie, Newell, and Drake, listed in a chronological order (Wageningen-Kessels et al. 2015).  

Car-following models are an important sub-category of traffic flow. The concept of car-

following was first introduced by Pipes in 1953. In 1958, a stimulus-response based approach 

was developed by Gazis-Herman-Rothery (GHR) in the General Motors laboratories 

(Saifuzzaman & Zheng 2014). The GHR model relied on a few inaccurate assumptions such as 

the following driver being able to accurately perceive small changes in speed and react to 

changes in speed even at very large headways. The need for a more adaptive model that better 

depicts the car-following behavior led to the establishment of psycho-physical models, that 

incorporate a certain level of human perspective. This establishes a more realistic approach to 

model traffic, considering that vehicles are controlled by humans with varying physical and 

mental restraints.  
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 A discussion consisting of existing psycho-physical models and a few other car-following 

models such as the intelligent driver model, human driver model, are presented in the sections 

that follow.  

2.1.1 Psycho-Physical Car Following Models 

Psycho-physical models, as the name suggests, incorporate both psychological and 

physical dynamics of drivers into the car following algorithms. They are entirely based on how 

drivers react to the actions of the lead vehicle and assume similar perception thresholds for all 

drivers (Schulze & Fliess 1997). This major assumption fails to consider the behavior and 

driving preferences of the individual operating the vehicle. For example, some individuals prefer 

maintaining shorter headways and accelerate more rapidly, affecting the overall flow and 

throughput of the roadway. This section presents a detailed review of the existing psycho-

physical car following models and their mechanics.  

2.1.1.1 Wiedemann (VISSIM) 

This is one of the most well-known psycho-physical models and it acts as the foundation 

behind the car following algorithm in VISSIM. After first being established in 1974, the model 

has been constantly modified and calibrated to suit various scenarios.  

The Wiedemann model considers six main thresholds as shown in figure 2.1. AX: The 

desired bumper to bumper spacing between two successive standstill vehicles, BX: The 

minimum desired headway expressed as a function of AX, speed, and distance, Closing delta 

velocity (CLDV): Deceleration resulting from the application of brakes because speed of vehicle 

is greater than the leader, SDV: The point at which the driver perceives a lead vehicle traveling 

at a slower velocity, OPDV: The point during a drive when the driver realizes that he/she is 
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traveling slower than the lead vehicle and starts to accelerate, and SDX: Perception threshold to 

model maximum preferred following distance (Saifuzzaman & Zheng 2014).  

 

 

Figure 2.1 Wiedemann car-following model (Wiedemann 1974) 

 

The dark line in figure 2.1 shows the path followed when a fast-moving vehicle 

approaches a slow leader. The fast-moving vehicle will approach the slower leader until the 

perpetual threshold of deceleration is reached (SDV), as shown by point A. At this point, the 

driver of the fast-moving vehicle applies the brakes and decelerates in order to match the 

velocity of the leader (Saifuzzaman & Zheng 2014). The zone of unconscious reaction is reached 

because it is very difficult to accurately predict the speed of the lead vehicle, causing an increase 

in the headway between the two vehicles. However, when the OPDV threshold is reached (point 

B), the driver realizes he/she is traveling slower than the leader and starts to accelerate. This 

process is assumed to continue until the destination is reached unless coupled with a lane-
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changing model. Another iteration of the Wiedemann model was also developed specifically to 

address driving behavior in a freeway facility (Wiedemann 99). Wiedemann 99 also has nine 

calibration parameters that allow for a more user adjustable model.  

 In 1998, Fancher and Bareket, proposed a new space known as the “comfort zone” to the 

Wiedemann model. This zone acts as a threshold for the desired spacing acceptable by the driver 

as a result of being unable to accurately perceive speed differences (Saifuzzaman & Zheng 

2014). 

2.1.1.2 Fritzsche (Paramics) 

The Fritzsche model is a psycho-physical model first established in 1994. The model has 

been incorporated in traffic simulation software such as Paramics and is capable of introducing 

human perception to the car-following (Olstam 2004). There are six main thresholds for this 

model and they include: perception of negative speed difference (PTN), perception of positive 

speed difference (PTP), desired speed (AD), risky distance (AR), safe distance (AS), and braking 

distance (AB). The thresholds together form five regions: free driving, danger, following I, 

following II, and closing in, as shown in figure 2.2. Each region captures a specific aspect of car-

following as experienced by the driver. The Fritzsche model assumes that a driver will only 

decelerate when in “danger” or “closing in” to the lead vehicle (Saifuzzaman & Zheng 2014). 
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Figure 2.2 Fritzsche car-following model (Olstam 2004) 

 

2.1.1.3 Urban Traffic Psycho-Physical Model 

The urban traffic model was established by Schulze and Fliess, in 1997. The phase 

diagram of the model is shown in figure 2.3 and can be interpreted as a combination of the 

Wiedemann and the Fritzsche car-following models.  The phase diagram shows seven defined 

regimes, namely: Free driving I, Free driving II, Approximating I, Approximating II, Following 

I, Following II, and Danger. The green line shows the trajectory of the following vehicle with 

respect to the changes in the driving regimes. 
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Figure 2.3 Urban traffic psycho-physical model (Schulze & Fliess 1997) 

 

2.1.2 Intelligent Driver Model (IDM) 

The IDM model is one of the most commonly used microscopic car-following model. 

The simplicity of this model with respect to the fewer number of parameters available, makes it 

easy to apply and calibrate (Hoogendoorn et al. 2012). The IDM captures both the desired speed 

and desired headway of the driver as shown in equation 2.1 (Saifuzzaman & Zheng 2014). 

 

𝑎𝑎𝑛𝑛(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑣𝑣𝑛𝑛(𝑡𝑡)
𝑣𝑣0(𝑡𝑡)

�
𝛿𝛿

− �
𝑠𝑠∗𝑛𝑛(𝑡𝑡)
𝑠𝑠𝑛𝑛(𝑡𝑡)

�
2

�                                                                                      (2.1) 

𝑠𝑠∗𝑛𝑛(𝑡𝑡) = 𝑠𝑠∗�𝑣𝑣𝑛𝑛(𝑡𝑡),∆𝑣𝑣𝑛𝑛(𝑡𝑡)� = 𝑠𝑠0 + 𝑠𝑠1�
𝑣𝑣𝑛𝑛(𝑡𝑡)
𝑣𝑣0(𝑡𝑡)

+ 𝑇𝑇𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡) +
𝑣𝑣𝑛𝑛(𝑡𝑡)∆𝑣𝑣𝑛𝑛(𝑡𝑡)

2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑
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Where, 

an(t) is the acceleration of the vehicle at time t 

amax is the maximum acceleration of the vehicle  

v0(t) is the desired speed 

vn(t) is the actual speed at time t  

Δvn(t) is the approaching rate at time t  

s*n(t) is the desired minimum gap between two vehicles  

s0 is the minimum spacing at standstill 

sn(t) is the spacing between two vehicles  

bcomf is the comfortable deceleration 

Tn is the desired time headway 

𝛿𝛿 characterizes how acceleration decreases with speed 

 

Researchers studying the IDM have established typical values for city and highway 

settings (Kesting & Treiber 2013). However, these values can usually be tweaked within the 

constraints to provide a better calibrated model. A summary of typical values along with model 

constraints are shown in table 2.1.  
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Table 2.1 Typical IDM Constraints (Kesting & Treiber 2013) 

Parameter Typical City 
Values 

Typical highway 
values Constraints 

Desired speed, v0 15.0 m/s 33.3 m/s 1 to 70 m/s 
Time headway, Tn 1.0 s 1.0 s 0.1 to 5 s 
Minimum spacing, s0 2 m 2 m 0.1 to 8 m 
Acceleration component, 𝛿𝛿 4 4 1 to ∞ 
Maximum acceleration, an 1.0 m/s2 1.0 m/s2 0.1 to 6 m/s2 
Comfortable deceleration, bcomf 1.5 m/s2 1.5 m/s2 0.1 to 6 m/s2 

 
 

The developers of the IDM, Kesting and Treiber, suggested modification to the model 

that would improve its predictive capabilities by using external visual indicators such as brake 

lights, turn signals, tailgating, and head light flashes. An example of a binary input to replicate 

car-following behavior when the brake lights of the lead vehicle are activated and the 

acceleration (𝑣̇𝑣𝑙𝑙) is less than the acceleration of the follower (ac) is shown in equation 2.2. 

 

𝑍𝑍𝑏𝑏 = � 1           𝑣̇𝑣𝑙𝑙 < 𝑎𝑎𝑐𝑐,
0    𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.                      (2.2) 

 

 A typical value of ac is -0.2 m/s2 and it corresponds to the rate of change of velocity when 

neither the brakes or throttle is applied (vehicle decelerates uniformly) (Kesting & Treiber 2013). 

Other visual indicators can also be individually represented in similar equations.  

A limited number of papers also discuss incorporating behavioral parameters into the 

IDM. In 2005, Fuller introduced the task capability interface (TCI) model to study the effects of 

task demand on risk-taking. Hoogendoorn et al. in 2012 combined the task-capability interface 

model with the IDM to predict changes to driving parameters. Figure 2.4 shows the TCI model 

that weighs the balance between the capability of the driver (C) and the demand of the task (D).  
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Figure 2.4 Task demand and capability interface (Fuller 2005) 

 

The IDM was modified by incorporating the difference between task demand and the 

capability of the driver. The task demand and driver capability are applied as a factor scaled 

between 0 and 1. This implies that the difference between the task demand and capability will 

range from -1 to 1 as follows:  

 

𝑚𝑚𝑑𝑑(𝑡𝑡) = 𝑚𝑚𝑡𝑡(𝑡𝑡) −𝑚𝑚𝑐𝑐(𝑡𝑡) ;    0 < 𝑚𝑚𝑡𝑡(𝑡𝑡) < 1, 0 < 𝑚𝑚𝑐𝑐(𝑡𝑡) < 1, and −1 < 𝑚𝑚𝑑𝑑(𝑡𝑡) < 1                    (2.3) 

Where, 

mt(t) is the task demand 

 mc(t) is the capability of the driver 

md(t) is the difference between task demand and driver capability 
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When the driver’s capability is much greater than the demand of the task, the driver will 

perform better (task is easy), resulting in a negative value for the difference. A theoretical 

framework of the methodology is shown in figure 2.5. The driver tries to minimize the difference 

between varying task demand and capability by attempting compensatory actions like reducing 

speed. However, when compensatory actions alone are not sufficient to neutralize the difference, 

performance effects can be noticed (changes in workload and situation awareness) (Dee Waard 

& Brookhuis, 1991). 
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Figure 2.5 Framework developed by Hoogendoorn et al. (2012) to modify the IDM 

 

The amax, bcomf, Tn, and v0 parameters were modified to incorporate the difference between 

task demand and driver capability. When the difference between task demand and driver 

capability results in a negative value, the amax, bcomf, and v0 parameters increase because of the 
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driver having a greater capability than the required task demand. However, Tn decreases because 

the driver is assumed to be capable of accepting a smaller time gap as his/her capability is greater 

than the demand of the task. The difference between task demand and capability was 

incorporated as a cubic function as shown below in equations 2.4-2.7.  

 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = (−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) +  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚                                                                                                    (2.4) 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = (−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚                                                                                                       (2.5) 

𝑣𝑣0(𝑡𝑡) = (−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑣𝑣0) + 𝑣𝑣0                                                                                                                    (2.6) 

𝑇𝑇𝑛𝑛(𝑡𝑡) = (𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑇𝑇𝑛𝑛) + 𝑇𝑇𝑛𝑛                                                                                                                        (2.7) 

 

Substituting equations 2.4, 2.5, 2.6, and 2.7 into equation 2.2 results in: 

 

𝑎𝑎𝑛𝑛(𝑡𝑡) = ((−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) �1 − �
𝑣𝑣𝑛𝑛(𝑡𝑡)

(−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑣𝑣0(𝑡𝑡)) + 𝑣𝑣0(𝑡𝑡)
�
𝛿𝛿

− �
𝑠𝑠∗𝑛𝑛(𝑡𝑡)
𝑠𝑠𝑛𝑛(𝑡𝑡)

�
2

�          (2.8) 

𝑠𝑠∗𝑛𝑛(𝑡𝑡) = 𝑠𝑠0 + ((𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑇𝑇𝑛𝑛) + 𝑇𝑇𝑛𝑛)𝑣𝑣𝑛𝑛(𝑡𝑡) +
𝑣𝑣𝑛𝑛(𝑡𝑡)∆𝑣𝑣𝑛𝑛(𝑡𝑡)

2�((−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)((−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑏𝑏max)
 

 

After incorporating possible compensatory actions, the next step involves incorporating 

performance effects into the model. De Waard and Brookhuis established that performance 

effects and demand are related with an inverted parabola function. This relationship was used to 

establish the following equation, with α, β, and γ being parameters: 

𝑚𝑚𝑝𝑝(𝑡𝑡) = −(𝛼𝛼𝑚𝑚𝑑𝑑(𝑡𝑡)2 + 𝛽𝛽𝑚𝑚𝑑𝑑(𝑡𝑡) + 𝛾𝛾)                                                                                                  (2.9) 
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Equation 2.9 shows that performance effects will have a greater magnitude if the 

capability of the driver is less than the demand of the task (if 𝑚𝑚𝑑𝑑(𝑡𝑡) is positive). The following 

equation (2.10) shows the result of incorporating both performance effects and task-capability 

interface into the IDM: 

 

𝑎𝑎𝑛𝑛(𝑡𝑡) = (1 −𝑚𝑚𝑝𝑝(𝑡𝑡))((−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) �1− �
𝑣𝑣𝑛𝑛(𝑡𝑡)

(−𝑚𝑚𝑑𝑑(𝑡𝑡)3𝑣𝑣0(𝑡𝑡)) + 𝑣𝑣0(𝑡𝑡)�
𝛿𝛿

− �
𝑠𝑠∗𝑛𝑛(𝑡𝑡)
𝑠𝑠𝑛𝑛(𝑡𝑡) �

2

� (2.10) 

 

The implementation of models that depend on desired measures such as speed, spacing, 

and headway, has a limitation that these measures cannot be readily observed in nature 

(Saifuzzaman & Zheng 2014). A correlation has to be made in order to depict how the desired 

measures are affected by changes in human factors such as workload, situation awareness, and 

level of activation. 

2.1.3 Human Driver Model (HDM) 

The HDM was first proposed by Treiber et al. in 2006. It incorporated four extensions in 

terms of finite reaction times, imperfect estimation capabilities, spatial anticipation, and temporal 

anticipation to the IDM (Trieber et al. 2006). The model is based on the reaction time and the 

number of vehicles ahead for which the drivers can anticipate spatial information. Figure 2.6 

shows the relationship between the reaction time and anticipated vehicles on traffic regimes 

including oscillating congested traffic (OCT), homogeneous congested traffic (HCT), moving 

and pinned localized clusters (MLC/PLC), and triggered stop-and-go (TSG). It can be seen that 

the greater the number of vehicles anticipated, the more the reaction time available to mitigate a 

crash. Anticipation is especially useful in the TSG regime, where predicting behavior of more 

lead vehicles can be useful to avoid crashes. 
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Figure 2.6 Regimes of the HDM 

 

2.2 Situation Awareness, Workload, and Level of Activation 

This section summarizes key definitions of the level of activation, situation awareness, 

and workload. It also discusses the experimental techniques that can be used to collect the 

respective data. 

2.2.1 Situation Awareness (SA) 

Situation awareness (SA) has been defined as the ability to perceive (Level 1 SA), 

comprehend (Level 2 SA), and project future status (Level 3 SA) of elements in an environment 

(Endsley 1995). A common misconception is that SA is only affected by perception (ability to 

locate an element). However, comprehension of the situation and the driver’s ability to project 

future scenarios are significant factors where as being able to identify an element without placing 

where it fits and how it affects an environment is not valuable. The SA of a driver is known to 

affect his/her capability during a task in that, high SA generally implies a more alert driver 
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unless affected by cognitive overload (Endsley, 1995). Figure 2.7 shows the Endsley, 1995 

model developed to process how SA is related to decision making and performance. 

 

 

Figure 2.7 Levels of SA in relation to decision making and performance (Endsley 1995) 

 

SA can be measured using several techniques. They can be divided into freeze probe, 

real-time probe, self-rating, observer-rating, and physiological techniques. A short description 

about each technique is provided in the sections that follow. 

2.2.1.1 Freeze-Probe Technique 
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These are typically used in a simulation environment, where a scenario is paused and 

queries about the situation are asked. Usually, all operator displays are blanked and questions 

related to participant alertness are administered (Salmon et al. 2006). A commonly used freeze 

probe technique is the situation awareness global assessment (SAGAT) developed by Endsley in 

2000. The SAGAT consists of queries designed to assess all three levels of SA. Freeze probe 

techniques are generally considered as highly intrusive as they interfere with the primary task. 

However, there has been no conclusive evidence regarding their level of intrusiveness (Salmon et 

al. 2006). 

2.2.1.2 Real-Time Probe Technique 

 This involves administering the questions targeted at establishing SA without 

pausing/freezing the simulation. During the task, participants are presented with queries pertinent 

to the environment and their answers along with response times are noted. A commonly used 

real-time probe technique is the situation present assessment method (SPAM). Although, 

generally regarded as less intrusive than the free-probe technique, no conclusive evidence exists 

to support this claim (Salmon et al. 2006). 

2.2.1.3 Self-Rating Technique 

 This technique involves administering questionnaires about SA after the completion of a 

task. They are relatively easy and cheap to administer. A commonly used self-rating technique is 

the situation awareness rating technique (SART). SART is a multidimensional scaling technique 

that consists of ten subscales each rated from one (low) to seven (high). The subscales include: 

Instability of situation, variability of situation, complexity of the situation, arousal, spare mental 

capacity, concentration, division of attention, information quantity, information quality, and 

familiarity. These ten subscales are categorized in three domains: attentional demand (D), 
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attentional supply (S), and understanding (U). Situation awareness is then calculated by U-(D-S) 

(Selcon & Taylor 1989). 

 The main problem associated with self-rating techniques is the susceptibility of the entire 

results to the last performed task (sensitivity).  

2.2.1.4 Observer-Rating Technique 

 This technique requires the presence of an expert to judge the level of SA of the 

participant. The observer provides a score based on the tasks performed in the field. The main 

advantage of this technique is that it is unintrusive. However, multiple observers (experts in SA) 

are required to ensure accurate results without being subject to individual observer bias. Also, the 

technique is relatively expensive due to the time required from several observers (Salmon et al. 

2006). 

2.2.1.2 Physiological Technique 

 Typical physiological technique used to measure SA is the eye-tracking. SA can be 

measured using gaze overlays, fixation patterns, and saccades. Studies have shown that 

analyzing fixation patterns and saccades can provide information on the relation between 

duration of fixation and the perception of objects/words (Just & Carpenter 1980). Eye-trackers 

are ideal for a simulation environment and provide real-time continuous data. Also, they are 

unintrusive and do not affect the performance of the primary task (Salmon et al. 2006). However, 

devices and relevant software can be very expensive.  

2.2.2 Workload (WL) 

Workload can be defined as the allocation of attention based on the mental resources 

available for information processing (Patten et al. 2006). The primary role of any driver is to 

safely navigate from point A to B. However, depending on environmental conditions, emergency 
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situations that require sudden maneuverability, and driver characteristics like age, experience, 

and behavior, consume mental resources required by the driver to safely carry out the primary 

task of driving vary. These changes in WL can be used to represent how the driving performance 

is affected. WL has been measured using subjective, performance, and physiological methods. A 

brief description of each of these measures is discussed below along with their respective 

sensitivities to task demand.  

2.2.2.1 Subjective Measures 

Subjective measures are a data collection technique that uses questionnaires and surveys 

to pose questions to participants. Participants reply based on their individual experience on the 

topic in question. Questionnaires and surveys can be administered before, during, or after the 

study. Three most commonly used techniques to measure subjective WL are the NASA-task load 

index (TLX), driver activity load index (DALI), and the rating scale mental effort (RSME). Each 

technique is briefly discussed in the sections that follow.  

2.2.2.1.1 NASA- Task Load Index (TLX) 

The NASA-TLX is one of simplest and the most widely used subjective measure. The 

NASA-TLX questionnaire calculates WL experienced by participants as a weighted average of six 

subscales: mental demand, physical demand, temporal demand, performance, effort, and frustration 

experienced during the task, each on a 20-point scale ranging from “very low” to “very high” 

(Stojmenova & Sodnik 2015). Participants are then required to assign a weight, from 0 to 5, to a pair 

of subscales shown on flash cards (6 subscales resulting in 15 possible pairwise combinations). It is 

usually administered after the completion of a task or event and has been used in several WL 

studies. However, it has been shown that the answers to the questionnaire are strongly influenced 

by the last task performed (Stojmenova & Sodnik 2015). Also, the NASA-TLX does not provide 
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time-varying data but instead relies on participant’s memory and ability to recall events that have 

already occurred. 

2.2.2.1.2 Driver Activity Load Index (DALI) 

The NASA-TLX was specifically designed to capture WL of pilots. However, a modified 

version known as DALI was developed by Pauzie around 1994 to assess WL related to driving 

with and without secondary tasks. The DALI replaces some subscales from the NASA-TLX not 

applicable to driving. The six subscales for the DALI are: effort of attention, visual demand, 

auditory demand, temporal demand, interference, situational stress (Pauzie et al. 2008). Although 

the DALI was developed for driving, NASA-TLX is still more commonly cited and used to 

measure WL in simulation studies (Stojmenova & Sodnik 2015).  

2.2.2.1.3 Rating Scale Mental Effort (RSME) 

The RSME is conceptually similar to the NASA-TLX and DALI, however, it consists of 

a nine-point scale ranging from “absolutely no effort” to “extreme effort” (Sartang 2017). 

Participants mark their level of effort after completion of each task. It is relatively easier and 

cheap to use. However, not a lot of studies utilize RSME to compute WL with respect to driving 

thus not favored over the NASA-TLX. 

2.2.2.2 Performance Measures 

Performance measures are based on changes to variables collected from the drive. 

Examples of performance measures during the drive include; lane keeping ability, speed control, 

and car-following ability (De Waard 1996). De Waard in 1996 concluded that varying WL 

results in changes to speed, car-following parameters such as standard deviation of headway 

deviation, and lane keeping parameters such as standard deviation of lateral position (SDLP) and 

steering wheel movement. The main issue with performance measures is that they vary by task 
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and the same measure sometimes cannot be used as a basis for comparison of WL (Sirevaag et 

al. 1993). For example, a driver might choose to slow down when observing a crash near the 

roadway, however, when driving through a work zone he/she might choose to focus more on 

keeping in their lane (SDLP). Ideally, performance measures should be coupled with other WL 

measures to provide a more holistic picture.  

2.2.2.3 Physiological Measures 

Physiological measures are used to assess mental workload from reactions within the 

human body. This type of measure provides exact results without interaction from other variables 

other than those being examined (De Waard 1996). Participants also do not need to reflect and 

fill questionnaires as data is continuous and readily available for the entire task. Most 

physiological measures focus on these four areas: heart, brain, eyes, and muscles. A brief 

description of measures in these areas is presented.  

2.2.2.3.1 Heart 

Electrocardiography (ECG) is primarily used in health care centers to monitor electrical 

activity in the heart and diagnose critical heart conditions such as attacks and arrhythmias. The ECG 

can be used to provide a continuous stream of data showing the impact of various driving tasks on 

the electrical activity of the heart expressed over a defined time period. ECG captures several 

variables than can be analyzed to assess workload and they include: heart rate (HR), heart rate 

variability (HRV), and Inter-Beat-Interval (IBI). Other devices such as heart rate monitors and chest 

straps can also be used to track changes to HR. However, they may be less accurate due to the lower 

sampling frequency. Both the ECG equipment and heart rate monitors/chest straps are considered as 

intrusive techniques because electrodes or contact points must be placed on the participant.  

2.2.2.3.2 Brain 



24 

 

Electroencephalography (EEG) is a clinical technique used to measure changes in 

electrical activity in the brain. The brain is a complex organ that controls most of the functions in 

the human body. The EEG device uses electrodes attached to the scalp of an individual to detect 

changes in electrical charges arising from the activity in the brain cells. The following 

paragraphs discuss the various regions of the brain and their functions. The EEG electrode 

positions corresponding to the regions of the brain are discussed.  

The brain can be divided into six regions: frontal lobe, parietal lobe, occipital lobe, 

cerebellum, temporal lobe and the brain stem, each responsible for different functions. The 

frontal lobe is the most anterior region of the brain, located in the forehead. It is responsible for 

problem solving, emotions, response, reasoning, and consciousness. The parietal lobe is located 

at the same level behind the frontal lobe. The parietal lobe is responsible for controlling sensory 

functions such as voluntary movements, touch, and visual attention. The occipital lobe is the 

most posterior region of the brain and is responsible for anything related to vision. The 

cerebellum is located at the base, in line with the ears and is responsible for coordination and 

balance. The brain stem is located deep in the center of the brain and links directly to the spinal 

cord. Figures 2.8a and 2.8b show the different regions of the brain. 
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Figure 2.8a Regions of the brain (Lehr 2015) 

 

 

Figure 2.8b Regions of the brain (Lehr 2015) 

 

The EEG electrodes are placed in positions shown in figure 2.9. The first alphabet in each 

position refers to a region of the brain. For example: the frontal lobe is represented by the letter 
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“F”, parietal lobe by the letter “P”, temporal lobe by the letter “T”, occipital lobe by the letter 

“O”. However, the letter “C” does not represent the cerebellum. Other letters such as “FP” 

represent the frontopolar and “A” represents the auricular (ear electrode). 

 

 

Figure 2.9 EEG electrode positions 

 

2.2.2.3.3 Eyes 

Eye-tracking devices that track eye movement of the driver without disrupting the 

primary task of driving are very useful in determining the areas of focus of the driver. Some 

advanced devices are also capable of tracking pupil dilation—the phenomenon causing changes 

to the pupil diameter due to varying levels of cognitive workload, also known as task-evoked 

pupillary response (TEPR) (Devos et al. 2017, Strayer et al. 2013). This can be used to assess 

cognitive workload continuously throughout a drive. Software analyze the patterns observed and 

compare it to baseline conditions to identify any changes resulting from the task.  
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2.2.2.3.4 Coordination between Vision and Muscles 

These measures typically require participants to react to a visual or sensory stimulus. 

Common measures include: 

The peripheral detection task (PDT) presents visual stimuli throughout various locations 

in a driving scenario. Stimuli are presented as small colored squares or circles. Participant’s 

reaction time to detect and respond to the task by pressing a button (coordination between vision 

and muscle), usually on the steering wheel, is measured (Patten et al. 2004).  

The detection response task (DRT) is a more refined version of the PDT and was 

primarily devised to determine the effect of a secondary task on WL. The DRT equipment 

presents frequent artificial stimuli during a task and records participant performance in the form 

of response time, hit rate, and miss rate (ISO 17488 2016). There are three types of DRT stimuli 

commonly used in studies. The head-mounted light-emitting diode (LED), fixed LED location 

mounted inside a vehicle, and a tactile electrical vibrator attached to the driver’s shoulder (ISO 

17488 2016). As the stimuli are presented, participants are required to acknowledge them using a 

micro-switch, typically attached to the thumb. Changes to the response time, hit rate, and miss 

rate of stimuli are analyzed to determine the intensity of WL being experienced. However, 

because both the PDT and DRT present simultaneous alternative tasks for the driver to complete, 

they compete with the primary task of driving thus not very effective in establishing actual WL.  

2.2.2.4 Sensitivity of the Various Measures 

De Waard observed that some WL measures were sensitive at a particular intensity of the 

task demand than others. This can be clearly observed in figure 2.10. However, it can also be 

noted that most measures are only sensitive at high WL and not during low WL. De Waard 
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concludes that one measure of WL might not be a sufficient representation for the entire task and 

multiple measures would provide a better basis for comparison.  

 

 

Figure 2.10 Sensitivity of workload measures (De Waard 1996) 

 



29 

 

Where, SDLP is the standard deviation of lateral position and SDSTW is the standard 

deviation of steering wheel movements.  

2.2.3 Level of Activation (LA) 

The level of activation or arousal has been identified by several researchers as a key 

measure of engagement, motivation, and enthusiasm involved in responding to a task. The LA is 

directly related to the ability of an individual to perform the task of driving (Tampere et al. 

2009). However, the LA is not only affected by the primary task of driving, but also by 

secondary tasks such as cell phone use and operating the media controller or navigation system 

(Tampere et al. 2009).  

De Waard and Brookhuis (1991), suggested measuring LA using the three classic EEG 

bands: theta, alpha, and beta, representing the frequency ranges 4-7 HZ, 8-13 HZ, and 14-30 HZ, 

respectively. To prevent susceptibility to isolated changes, De Waard and Brookhuis proposed 

combining the spectral power of all three bands (filtered and divided into epochs) using the 

formula (α+θ)/β (De Waard & Brookhuis 1991). Prinzel III et al. in 2001, identified the electrode 

positions P3, PZ (P2), P4, CZ(C2) to capture the “engagement index” of a driver, also known as 

the LA.  

A study by Tejero and Choliz in 2002 used the EEG Fourier spectral power analysis 

suggested by De Waard and Brookhuis in a real-world driving study. Participants were required 

to drive 90 km on a highway while being monitored by researchers. The study showed that LA 

increased with varying speed than when keeping at a constant speed. They concluded that the act 

of modifying speed creates a source of engagement thus increasing the LA of the driver.  
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2.3 Relationship Between WL, SA, LA and Performance 

 The relationship between WL and task demand is well established by several studies. De 

Waard suggests a U-function as shown in figure 2.10, where WL initially starts off at high and 

decreases as the task gets familiar. As the task difficulty gradually increases, there might not be 

any significant changes to WL until a threshold is reached (region A3). After, WL increases 

steeply with increase in task demand (regions with high sensitivity and easy measurability of 

WL) and performance slump is recorded (De Waard 1996).  

 From figure 2.11, it can be seen as WL increases, the LA also increases. However, the 

relationship is not entirely linear.  

 

 

Figure 2.11 Relationship of WL, LA, and performance (Young et al. 2015) 

 

Zhang and Kumada, in 2017, studied the relationship between WL and mind wandering. 

The experiment was performed in a low-fidelity driving simulator. 40 participants drove a 25-

minute scenario with car-following tasks. A real-time probe was applied randomly and 
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participants rating of mind wandering was recorded. After the completion of the scenario, 

NASA-TLX was completed to establish the WL. The study also correlated the measured WL to 

performance measures such as the standard deviation of lateral position (SDLP) and standard 

deviation of steering wheel movement (SDSTW). No significant relationship was seen between 

the performance measures and WL.  

From figure 2.12, it can be clearly established that as WL increases, mind wandering 

decreases. Mind wandering can be directly attributed to SA. However, from this experiment, the 

levels of WL are not clear. It would seem that it only captures the region between low and high 

WL.  

 

 

Figure 2.12 Mind wandering and WL (Zhang & Kumada 2017) 

 

 In general, it can be theorized that high levels of WL indicate low SA, but low levels of 

WL do not necessarily indicate a high level of SA. In situations with low to medium WL, SA 
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increases gradually before reaching an optimum and decreasing sharply. Also, both WL and SA 

are dependent on LA.  
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Chapter 3 Methodology 

The methodology is divided into two main phases. The first phase involves a simulator 

study to establish different levels of driver classification through performance parameters and 

biobehavioral trends and the second phase incorporates the classifications with their subsequent 

biobehavioral parameters into car following models. A framework for the proposed methodology 

is provided in figure 3.1.  

 

 

 

Figure 3.1 Methodological framework  
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 The theory behind developing a framework that can be used to incorporate biobehavioral 

parameters such as LA, WL, and SA, with respect to changes in driving performance is 

explained in the paragraphs that follow.  

The external conditions in a specific scene contribute towards the complexity of the 

driving task at hand. Differences in conditions, such as the geometric properties, weather, 

number of interaction vehicles, and sources of distraction, add a complexity to the driving 

environment. The capability of the driver to handle tasks of varying complexity, mostly depend 

on his/her physical and mental characteristics. For example: it can be expected that older drivers 

have slower reaction times than younger drivers due to their diminishing physical capabilities. 

Also, some individuals may prefer to drive faster and follow smaller headways (aggressive), 

while others tend to be more conservative. Static and dynamic characteristics are identified as 

distinguishable variables between drivers. Where the age and experience of the driver coupled 

with the activation level can affect driving performance. Activation level describes the driver 

arousal state before and during the drive e.g. a drowsy or less motivated driver will have a lower 

activation level than an active driver. 

Also, the capabilities of the driver and the demands of the task are closely related. If the 

capabilities of the driver are greater than those required by the task, then the task will be easily 

completed (Hoogendoorn et al. 2012). It also means that, drivers can complete this task at a 

lower activation level and by utilizing fewer mental resources (WL). If the capability of the 

driver is equal to the task demand, the task becomes difficult as the driver is using all the 

available capabilities to successfully complete the task (Hoogendoorn et al. 2012). The driver 

will require a higher LA and alertness to complete this task. However, if the capability of the 
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driver is less than that required by the task, then the driver will fail to complete the task. The 

capability of the driver is also constrained by the physical capability/condition of the vehicle.  

The interaction between driver capability and demand can be quantified with respect to 

the changes in WL and SA. Slight imbalance between the WL and SA can result in the driver 

compensating by adjusting longitudinal control variables such as speed, acceleration, and 

headway. For example: if a task is challenging (increased WL), the driver might choose to 

reduce his/her overall speed or increase his/her headway in order to be safe and maintain a 

comfortable level of SA. In essence, he/she is compensating for the lack of capabilities at that 

instance, by making these changes to the driving. This leads to a trigger that is activated through 

small imbalances between WL and SA (TR 1) as seen in figure 3.2. However, if the imbalance 

between driver capability and task demand is high, e.g. task is hard to be successfully completed 

by the driver’s current capability, the driver tries to restore this imbalance resulting in both 

compensatory and performance effects (setting off TR 2). Compensation effects are theorized to 

only affect longitudinal driving variables while performance effects are theorized to affect 

longitudinal and lateral (standard deviation of lateral position, standard deviation of the steering 

wheel position) driving variables. 

 

 

 

 

 

 

 



36 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C* = min {VCmax or C}. Where VC is the capability of the vehicle. 
 

Figure 3.2 Theoretical framework for classifying drivers and incorporating biobehavioral 
parameters  
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Drivers will also be categorized by behavioral (LA, WL, SA) and static characteristics 

(age, experience, number of speeding tickets, number of accidents), into three groups: 

conservative, average, and aggressive. The resulting effect of the driver trying to match his/her 

capability to the task demand will be used to establish how a conservative or aggressive driver 

will react to a task when compared to an average driver. Will the aggressive driver experience 

lower workload, implying lower compensation and performance effects, while completing a 

difficult task? Or will aggressive drivers increase the speed and follow shorter headways during 

an easy task, to increase the level of difficulty to match their capability accordingly? The 

established classifications will also be compared to the driving performance variables such as 

average speed, average headway, and maximum acceleration, to measure the accuracy of self-

perception in driver classification.  

 Based on this description, the theoretical framework in figure 3.2 for classifying drivers 

using characteristics, physiological, and behavioral parameters is established. 

3.1 Proposed Modification to the IDM 

In order to incorporate the theoretical framework shown in figure 3.2, modifications to 

the IDM are required. The IDM parameters that can be affected by an imbalance in the task-

capability interface are assumed to be the desired speed and desired time gap. This assumption is 

made because the desired variables capture what the driver wants to do at that moment but is not 

able to due to a higher than normal task demand. Equations 3.1 and 3.2 show how the overall 

acceleration of the IDM will be modified when triggers 1 or 2 are activated. 
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Compensation only (TR 1): 

𝑎𝑎𝑛𝑛(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑣𝑣𝑛𝑛(𝑡𝑡)

(𝛼𝛼 + 𝛽𝛽)𝑣𝑣0(𝑡𝑡)
�
𝛿𝛿

− �
𝑠𝑠∗𝑛𝑛(𝑡𝑡)
𝑠𝑠𝑛𝑛(𝑡𝑡)

�
2

�                                                                       (3.1) 

𝑠𝑠∗𝑛𝑛(𝑡𝑡) = 𝑠𝑠0 + (𝛼𝛼 + 𝛽𝛽)𝑇𝑇𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡) +
𝑣𝑣𝑛𝑛(𝑡𝑡)∆𝑣𝑣𝑛𝑛(𝑡𝑡)

2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

Where, 

α = Compensation coefficient 

β = Activation level coefficient 

 

Compensation and Performance (TR 2): 

𝑎𝑎𝑛𝑛(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑣𝑣𝑛𝑛(𝑡𝑡)

({𝛼𝛼 + 𝛾𝛾} + 𝛽𝛽)𝑣𝑣0(𝑡𝑡)
�
𝛿𝛿

− �
𝑠𝑠∗𝑛𝑛(𝑡𝑡)
𝑠𝑠𝑛𝑛(𝑡𝑡)

�
2

�                                                            (3.2) 

𝑠𝑠∗𝑛𝑛(𝑡𝑡) = 𝑠𝑠0 + ({𝛼𝛼 + 𝛾𝛾} + 𝛽𝛽)𝑇𝑇𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡) +
𝑣𝑣𝑛𝑛(𝑡𝑡)∆𝑣𝑣𝑛𝑛(𝑡𝑡)

2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

Where, 

γ = Performance coefficient 

 

Together with incorporating compensation, LA, and performance coefficients, a visual 

cue parameter that incorporates the effect of active brake lights (bl) on the lead vehicle is 

implemented to the model. When brake lights are activated on the leader and the time-gap (T(t)) 

between the leader and follower at time (t) is less than the desired time-gap (Tn), the modified 

IDM model recalculates the car-following trajectory using the acceleration/deceleration (a(t)) at 

that instance. However, if T(t) is greater than Tn, it can be assumed that the driver does not apply 

brakes or accelerate, resulting in a uniform deceleration of -0.2m/s2 (Kesting & Treiber 2013). 

T(t) and Tn are used to establish constraints because it can be assumed that drivers can more 
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readily perceive time-gaps than the acceleration of the leader. Equation 3.3 shows the 

implementation of brake light parameter along with the resulting acceleration/deceleration.  

 

𝑏𝑏𝑏𝑏 =  �1     𝑂𝑂𝑂𝑂,
0   𝑂𝑂𝑂𝑂𝑂𝑂. 

If 𝑏𝑏𝑏𝑏 =  1 then, 𝑎𝑎𝑛𝑛(𝑡𝑡)∗ = �
𝑎𝑎(𝑡𝑡)                    0 ≤ 𝑇𝑇(𝑡𝑡) ≤ 𝑇𝑇𝑛𝑛
−0.2𝑚𝑚 𝑠𝑠2⁄          𝑇𝑇𝑛𝑛 ≤ 𝑇𝑇(𝑡𝑡) ≤ 5                                                   (3.3) 

 

Where, 𝑎𝑎𝑛𝑛(𝑡𝑡)∗ describes the starting acceleration/deceleration during car-following 

computations. Any brake light observed from a time-gap of greater than five seconds will not be 

considered as this will be the threshold to represent active car-following.  

3.2 Data Collection Techniques 

A list of the techniques that will be used during data collection to establish the coefficients α, β, 

and γ are listed in table 3.1.  
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Table 3.1 Measuring techniques aggregated by the coefficient 

Coefficient Methodological Definition Measuring Event/Technique 

𝛼𝛼 Compensation coefficient 

Measuring WL: 
• HR 
• Pupil dilation 
• NASA-TLX 
Measuring SA: 
• Gaze overlay 
Measuring longitudinal control: 
• Speed 
• Headway 
• Acceleration 

𝛽𝛽 LA coefficient EEG  

𝛼𝛼 + 𝛾𝛾 Compensation + Performance 
coefficient 

Measuring WL: 
• HR 
• Pupil dilation 
• NASA-TLX 
Measuring SA: 
• Gaze overlay 
Measuring longitudinal control: 
• Speed 
• Headway 
• Acceleration 
Measuring lateral control: 
• SD of steering wheel position 
• SD of lateral position 
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Chapter 4 Data Collection Plan 

This section discusses the design of the scenarios and the strategies that will be followed 

during data collection. 

4.1 Participant Recruitment 

The study was first submitted to the Human Research Protection Program (HRPP) at the 

University of Kansas (KU), for approval. The study was then advertised to attract potential 

participants through flyers around Lawrence, social media websites, and email announcements.  

90 participants will be recruited to participate in this research, equally split between males and 

females. The participants will be divided into three age groups 18-24, 25-49, and 50-65 years. 

Participants will be screened using a questionnaire to determine their age, driving experience, 

susceptibility to motion sickness, health conditions, and other aspects of driving such as gap 

acceptance, merging behavior, speed preferences, and lane changing preferences.  Based on 

static and dynamic characteristics, drivers will be divided into the following three categories: 

conservative, average, and aggressive. This information will later be used to check if participants 

are able to correctly gauge their driver classification level. 

Participants are required to complete a 45-minute screening questionnaire, covering the 

demographic information, medical conditions, driving preferences and history, mood and 

personality measure, empathy and moral decision-making measures, and attention and executive 

function measures. The internet information statement for this survey is shown in Appendix A. 

4.1.1 Mood and Personality Measure 

There are several measures available through the literature that provide mood and 

personality assessments such as: 
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• Positive and Negative Affect Schedule (PANAS): The PANAS is a self-report 

measure designed to assess both positive and negative affect (Watson et al. 1988). 

The PANAS consists of 20 adjectives pertaining to negative affect (i.e., distressed or 

nervous) and positive affect (i.e., excited or proud), with ten items for each subscale. 

Items are rated on a five-point Likert scale: 1 = “Very slightly or not at all” to 5 = 

“Extremely.” The subscales are obtained by taking the average of each item within 

that subscale.   

• Need for Cognition: This test is designed to assess the tendency to engage in and 

enjoy effortful cognitive endeavors (Cacioppo et al. 1984). 

• Cognitive Reflection Task: This questionnaire assesses individuals' ability to suppress 

an intuitive and spontaneous wrong answer in favor of a reflective and deliberative 

right answer (Frederick 2005).  

• Neuroticism-Extroversion-Openness Five Factor Inventory: this is a 60-item survey 

to measure the five primary personality characteristics of openness, 

conscientiousness, extraversion, agreeableness, and neuroticism (Costa & McRae 

1989). 

4.1.2 Empathy and Moral Decision-Making Measures 

• Interpersonal Reactivity Index (Davis 1983). This questionnaire measures individual 

differences in empathy.  

• The Empathy Quotient (Baron-Cohen & Wheelwright 2004): This questionnaire also 

measures individual differences in empathy.  

• Psychological Entitlement Scale (Campbell et al. 2004): This scale measures 

psychological entitlement, which refers to the stable and pervasive sense that one 
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deserves more and is entitled to more than others. This sense of entitlement will also 

be reflected in desired or actual behaviors. The concept of psychological entitlement 

is intrapsychically pervasive or global; it does not necessarily refer to entitlement that 

results from a specific situation (e.g., “I am entitled to social security because I paid 

into the system,” or “I deserve an ‘A’ because I performed well in class”).  Rather, 

psychological entitlement is a sense of entitlement that is experienced across 

situations.  

• Ethical dilemmas such as the Trolley/Footbridge Dilemmas: These are short vignettes 

describing different scenarios and the participant has to decide or evaluate the 'right' 

course of action. The tasks are meant to measure moral decision making in context. 

4.1.3 Attention and Executive Function Measures 

• Stroop Task (Stroop 1935): This is a classic measure of cognitive inhibition in 

cognitive control.  

• Eriksen Flanker task (1979): This is a classic measure of attention. 

4.2 Configuring the EEG, HR Monitor, and Eye Tracker 

The LA (arousal) is a key variable in this research. Changes in the LA has been directly 

associated with the changes in neural activity occurring in the driver’s brain (Brookhuis et al. 

1991). The EEG will be used to monitor any changes in activation level associated with the 

various tasks presented during the drive. It will also be used to capture an initial state of mind of 

the driver at the beginning of the drive. 

During the drive, participants’ overall attentional trajectory will be captured using the 

EEG at a sampling frequency of 500 HZ. A portable, lightweight, wireless, and rechargeable 

system for EEG recording is available for this project. The system (Enobio) allows for the 
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reliable reproduction of EEG, EOG, and EMG signal with a rapid setup that takes less than 5 

minutes and is optimal for multi-component, multi-method studies. The accompanying software 

allows for visualization of time-frequency 2D/3D features (3D EEG scalp map) in real time, 

including the power spectrum and spectrograms, as well as easy channel labeling. The software 

further provides continuous online EEG signal quality. 

The HR monitor used is the Polar H10 chest strap that collects heart rate at 1 HZ. 

Participants will be shown how to properly place the device along their chest to ensure accurate 

data collection.  

Fovio-FX3 eye tracker is installed inside along the dashboard of the simulator chassis. 

This collects cognitive workload through TERP at 60 HZ. Also, SA is tracked by overlaying the 

gaze of the participants with respect to the object in sight, fixation patterns, and saccades.  

4.3 Scenario Design and Pilot Testing 

A preliminary driving scenario is designed with two phases: free driving and following. 

The free driving phase captures the participant’s desired speed and maximum acceleration 

components on an empty highway, while the following phase captures the participant’s desired 

time-gap. Each phase is designed to be driven at both 55 mph and 75 mph speed limit, to capture 

the variability. 

The actual driving scenario is designed to last 35 minutes and consists of approximately 

40 miles of roadway. A breakdown of the full appointment schedule of the participant is shown 

in table 4.2.  
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Table 4.2 Time breakdown by activity 

Description Expected Time 
Consent form explanation 3 minutes 
Equipping participants with EEG & HR 5 minutes 
Baseline EEG data: Watching short video 5 minutes 
Introduction to simulator driving 2-7 minutes 

Preliminary scenario: 

Free driving (no other roadway traffic) with 55 mph and 75 
mph speed limits 5 minutes 

Following (one lead vehicle): lead speed changes from 55 
mph to 75 mph 5 minutes 

Total time 10 minutes 
 

Actual scenario: 

Traffic density 
Scenario Type 

1 2 3 

Level 1 (Medium) 
2 mins no 

weaving activity + 
5 mins 

5 minutes 5 minutes 

Level 2 (High) 
2 mins no 

weaving activity + 
5 mins 

5 minutes 5 minutes 

Total time 35 minutes 
 

NASA-TLX + SA Questionnaires 15 minutes 

Total anticipated duration = 80 minutes 
 

 

The actual scenario incorporates six tasks with varying levels of difficulty (three types 

and two levels of traffic density) on a four lane-divided highway with a grass median. The 

participant is asked to follow the lead vehicle in each of these tasks. At the completion of each 

task, the participant is required to fill out the NASA-TLX and SA questionnaire.  

 



46 

 

Type 1: Low weaving activity  

The first type is designed to capture driving performance at lower task difficulty. 

Participants are required to follow a car ahead of them at 75 mph while driving on the right lane. 

Low weaving activity occurs in the left lane with approximately three cars per mile changing 

lanes ahead of the car-following lead vehicle.  

Type 2: Active work zone-left shoulder closed and medium weaving activity  

The second type is designed to capture driving performance at a slightly higher task 

difficulty with an active work zone that closes the left shoulder of the roadway. The idea is to 

alter the driver’s WL and SA. Participants are also required to follow a car ahead of them at 75 

mph while sticking to the right lane. Medium weaving activity occurs in the left lane with 

approximately five cars per mile changing lanes ahead of the car-following lead vehicle.  

Type 3: Active work zone-left shoulder closed and high weaving activity  

The third type is designed to capture driving performance at a higher task difficulty with 

an active work zone that closes the left shoulder of the roadway. However, high weaving activity 

occurs in the left lane with approximately ten cars per mile changing lanes ahead of the lead 

vehicle.  

Each scenario type is driven at two levels of traffic density, to further increase the 

number of task difficulty variations. The actual scenario is counter balanced by randomizing the 

order in which the scenario types and traffic density levels appear to each driver. Figure 4.1 

shows the layout of the designed highway (T1, L1 represents scenario type 1 and traffic density 

level 1).  
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Figure 4.1 Highway layout of the actual scenario  

 

Pilot testing will be carried out on five participants to establish any design flaws in the 

scenario and assess the quality of data output. Any identified flaws will be corrected to ensure a 

smoother experiment.  

4.4 Data Collection 

The data will be collected using the KU driving simulator, a fixed-based simulator in an 

Acura MDX chassis (half cab). The simulator provides a 170o horizontal field of view as shown 

in figures 4.2 and 4.3, with three forward screens and one rear screen. The rear screen renders the 

view of both side-view mirrors and the rear-view mirror, providing an immersed driving 

experience. 

T3, L2 
T2, L2 

T1, L2 
T3, L1 

T2, L1 
T1, L1 
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Figure 4.2 Layout of the KU driving simulator 

 

The simulation run and respective data are recorded on the MiniSim computer while the 

video of the participant’s drive is captured on the video capture computer.  

 

      

Figure 4.3 KU driving simulator in action 
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Data will be obtained in three formats: subjective, driving variables, and physiological.  

The subjective data will be collected using paper and online questionnaires such as the screening 

questionnaire, NASA-TLX, and SA questionnaires. Driving variables will be the outputs from 

the simulator and they include: average speed, maximum speed, average headway, minimum 

headway, maximum acceleration, maximum deceleration, standard deviation (SD) of lateral 

position, SD of steering wheel position, number of collisions, maximum brake force, and average 

brake force. Physiological variables will be obtained using the EEG, HR monitor, pupillometry, 

and gaze overlay. 

4.5 Analysis Plan 

All participants are required to complete all six driving tasks that represent increasing 

task difficulty. This represents a within-subjects design with the independent variable being task 

difficulty. The dependent variables will be the output from the driving simulator and 

physiological variables. 

The null hypothesis for this research is that changes in task difficulty do not result in 

changes to WL and SA and cannot be directly correlated to performance measures thus providing 

no basis for incorporating these into the IDM. A significance level of 95% will be used to 

substantiate any evidence. A paired t-test will be used to compare variables obtained at each 

difficulty level with those obtained from a baseline difficulty consisting of no significant visual 

or mental load.  

The analysis plan involves performing a cluster analysis to establish the different 

behavioral thresholds for the drivers that participated in the study. First, the clusters will be 

created using subjective data from self-reported questionnaires. These clusters will then be 

correlated to those obtained by using performance measures collected from the drive.  
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The level of activation, compensation, and performance coefficients will be obtained by 

normalizing the data obtained from each technique listed in table 3.1. Various variable 

interactions will be tested to determine those which result in the best goodness of fit to the 

simulation data. Data from 69 drivers will be used for model development (determining which 

combination of measurement techniques yields the best results for the modified IDM used to 

better approximate simulation collected results) while the remaining 21 drivers will be used for 

validation.  
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Chapter 5 Summary and Future Plan 

In summary, the previous chapters provide a comprehensive literature review of existing 

car-following models with specific attention to the IDM and how it has been previously modified 

to incorporate biobehavioral parameters along with the strategies to collect and measure these 

parameters. The proposed methodology and developed framework of the theoretical model is 

then discussed in chapter 3. A detailed section describing the data collection plan with respect to 

the driving simulator, questionnaires, and physiological measures is presented in chapter 4. 

Appendix A, B, C, D consist of the internet information statement, IRB approval letter, flyer to 

recruit participants, and the informed consent form, respectively.   

Table 5.1 shows the proposed timeline for all remaining tasks. The timeline accounts for 

unforeseen changes that might be made to the statistical analysis to provide a better 

representation of the data. A final report detailing all the tasks performed during the next year 

will be submitted in December.  

 

Table 5.1 Timeline for the next year  

  2018 2019 
Tasks DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Pilot Testing                           
Design Adjustment                           
Finalizing Participants                           
Data Collection                           
Statistical Analysis                           
Unforeseen Changes                           
Draft Final Report                           
Deliverables FR1 QR      QR     QR     QR  DFR FR2 

 

 Where, DFR: Draft report, QR: Quarterly updates, FR1: Final report phase 1, FR2: Final 

report phase 2.   
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Appendix D: Informed Consent Document 

INFORMED CONSENT DOCUMENT 
 

Dr. Alexandra Kondyli, PhD                                            
Principal Investigator                        

Department of Civil, Environmental, and Architectural Engineering 
1530 W. 15th Street | 2159A Learned Hall                            

University of Kansas, Lawrence, KS 66045                             
(785) 864-6521          

 
Modeling Driver Behavior and Driver Aggressiveness Using 

Biobehavioral Methods 
  
INTRODUCTION 
 
The Department of Civil, Environmental, and Architectural Engineering at the University of Kansas 
supports the practice of protection for human subjects participating in research. The following 
information is provided for you to decide whether you wish to participate in the present study. You may 
refuse to sign this form and not participate in this study. You should be aware that even if you agree to 
participate, you are free to withdraw at any time. If you do withdraw from this study, it will not affect your 
relationship with this unit, the services it may provide to you, or the University of Kansas. 
 
PURPOSE OF THE STUDY 
 
The research is part of a Mid-America transportation Center (MATC) project and will be used to analyze 
driver behavior and aggressiveness. The findings of this research will help us better understand how driver 
behaviour and aggressiveness are linked to changes in driving performance and workload. The research 
will help to improve existing traffic flow models by incorporating biobehavioral architecture. 
 
PROCEDURES 
 
This study is part of a MATC research project. The study will recruit 90 drivers to participate in the 
experiments, from 18 to 65 years old. During the experiment you will be asked to drive the driving 
simulator for approximately 70 minutes. The first 5 minutes will be for you to familiarize with the 
vehicle/simulator and also to see if you have any signs of motion sickness. After that, and provided you 
do not have motion sickness, we will start collecting data related to your driving along the simulated 
scenarios. A heart rate monitoring strap will be placed in the center of your chest to collect data on heart 
beats per second. An elastic cap, surface electrodes, and ear clip will also be used to record the electrical 
activity of your brain throughout the experiment, a procedure known as electroencephalogram or EEG. 
We will use a wireless system to record EEG. We will be recording EEG from the electrodes applied to your 
scalp during the entire duration of the experiment. All electrodes will be dry without the need for gel. You 
will have intermediate breaks every 5-15 minutes depending on the driving scenario. The principle 
investigator (PI) will be analyzing your drive and video recordings after the experiment is finished. Only 
people that are related to this research (Vishal Kummetha and Dr. Alexandra Kondyli and Dr. Christopher 
Ramey) will have access to these recordings, which will be securely stored in hard drives and kept in the 
Driving Simulator Lab.  
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Your responses will never be associated with your name and they will be stored electronically on a 
password-protected computer. Your behavioral test results may be made available to other researchers 
in our laboratory via an electronic database, which will be stored on a password-protected computer.  
Your behavioral test results and background demographics information will be maintained in this 
database. Researchers in our lab will be able to consult the database for later analysis. Your name and 
contact information will not be included within the database but will be maintained in a locked cabinet as 
well as electronically in a separate password-protected list.  
 
The research team is committed to confidentiality. Your identity will not be revealed in the final report for 
this project, nor in any of the manuscripts produced. Instead, you will be assigned a participant ID number. 
 
SELECTION CRITERIA 
 
Participants are required to be between the ages of 18 and 65 years. Participants are selected based on 
possession of a valid US driver’s license with at least 3 years of driving experience and no less than 5000 
miles of annual driving. Participants with any significant heart conditions or at any stage of pregnancy will 
not be approved for the study. Also, participants with medical conditions such as severe motion sickness 
or a history of seizures will not be approved for participation in the study.  
 
RISKS    
 
Driving Simulator 
The risks for this experiment are primarily related to motion sickness that you might experience as you 
are driving in the simulator. Motion sickness does not happen to everyone, but typical motion sickness 
symptoms include: general discomfort, fatigue, headache, eye strain, difficulty focusing, increased 
salivation, sweating, nausea, difficulty concentrating, fullness of head, blurred vision, dizzy eyes, vertigo, 
stomach awareness, and burping. 
 
We will be monitoring you during the entire duration of the experiment for signs of motion sickness. 
During the frequent breaks, we will also ask you several questions on how you feel, so we determine 
whether you start to experience motion sickness or not.  
 
Additionally, you might experience mild stress during decision-making during the driving portion of the 
study, but this stressor is no more than most people experience on a daily basis. You might also experience 
mild anxiety about being video recorded while you are driving.  
 
Behavioral Testing 
The testing, as with any testing, may be an inconvenience and cause fatigue, but the tests are not known 
to cause undue distress or emotional stress. You may be asked to perform a task that you find very difficult 
or irritating. If you find the task too annoying or frustrating the experiment will be discontinued. Although 
there is a possible risk of loss of confidentiality with the maintenance of databases, every effort will be 
made to minimize this risk through the use of password-protection and the separation of name and 
contact information from behavioral testing results as discussed above. 
 
Electroencephalogram 
There are no risks associated with EEG recordings. There might be slight itchiness or tightness around the 
head due to the application of the head cap and electrodes. 
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Heart Rate Chest Strap 
There are no risks associated with the Polar HR10 monitor. 
 
BENEFITS 
 
There are no direct personal benefits from participating in this research.  
PAYMENT TO PARTICIPANTS  
 
You will be given $50 compensation (in the form of a gift card) for participating in this driving simulator 
data collection experiment. You will be receiving cash at the end of the experiment. Investigators may ask 
for your social security number in order to comply with federal and state tax and accounting regulations.  
 
PARTICIPANT CONFIDENTIALITY 
 
Your name will not be associated in any publication or presentation with the information collected about 
you or with the research findings from this study. Instead, the researchers will use a study number or a 
pseudonym rather than your name. Your identifiable information will not be shared unless (a) it is required 
by law or university policy, or (b) you give written permission. 
 
Permission granted on this date to use and disclose your information remains in effect indefinitely. By 
signing this form you give permission for the use and disclosure of your information for purposes of this 
study at any time in the future.  
 
INSTITUTIONAL DISCLAIMER STATEMENT   
 
In the event of injury, the Kansas Tort Claims Act provides for compensation if it can be demonstrated 
that the injury was caused by the negligent or wrongful act or omission of a state employee acting within 
the scope of his/her employment. 
    
REFUSAL TO SIGN CONSENT AND AUTHORIZATION 
 
You are not required to sign this Consent and Authorization form and you may refuse to do so without 
affecting your right to any services you are receiving or may receive from the University of Kansas or to 
participate in any programs or events of the University of Kansas. However, if you refuse to sign, you 
cannot participate in this study. 
 
CANCELLING THIS CONSENT AND AUTHORIZATION 
 
You may withdraw your consent to participate in this study at any time, without consequence, and receive 
part of the compensation of $10 in gift card. If participants do not show up at appointment time or 
withdraw before the start of the study, no compensation will be provided.  
 
QUESTIONS ABOUT PARTICIPATION 
 
If you have any questions or concerns about the research study, please contact Vishal Kummetha or  
Dr. Alexandra Kondyli. They will be glad to answer any of your concerns (Contact information is provided 
below).  
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PARTICIPANT CERTIFICATION 
 
I have read this Consent and Authorization form. I have had the opportunity to ask, and I have received 
answers to, any questions I had regarding the study. I understand that if I have any additional questions 
about my rights as a research participant, I may call (785) 864-7429 or (785) 864-7385, write the Human 
Research Protection Program (HRPP), University of Kansas, 2385 Irving Hill Road, Lawrence, Kansas 66045-
7568, or email irb@ku.edu.  
 
I agree to take part in this study as a research participant. By my signature I affirm that I am at least 18 
years old and that I have received a copy of this Consent and Authorization form.  
 
 
_______________________________                            _____________________ 
        Type/Print Participant's Name                              Date 
 
 
 _______________________________   
               Participant's Signature 
 
 
RESEARCHER CONTACT INFORMATION 
 
Dr. Alexandra Kondyli, PhD                                            
Principal Investigator                        
Department of Civil, Environmental, and Architectural Engineering 
1530 W. 15th Street 
2159A Learned Hall                            
University of Kansas                              
Lawrence, KS 66045                             
(785) 864-6521          
 
Dr. Christopher H. Ramey, PhD                                            
Co-Principal Investigator 
Department of Psychology 
426 Fraser Hall 
University of Kansas                              
Lawrence, KS 66045                             
785-864-1771 
 
Vishal Kummetha, Graduate Research Assistant 
Department of Civil, Environmental, and Architectural Engineering 
1530 W. 15th Street 
2160 Learned Hall                            
University of Kansas                              
Lawrence, KS 66045                             
(785) 312-0845  
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