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Abstract 

This project aims to design and prototype a smart system for assisting transportation 

workers in operations. The system is architected as a cyber-physical system (CPS) to create the 

abilities to sense and monitor transportation workers in their workplace, assess and predict their 

risk exposure and awareness levels, and assist them in operations, in a near real-time manner. 

The project employs methods of system analytics to build the digital twin of the physical system 

- transportation workers operating in the workplace. The digital twin is able to process and 

analyze incident report data, and sensed data of workers and their workplace, to model, 

understand, and predict worker operations, as well as to evaluate risk exposure in the workplace. 

The project further uses sensing, communication, and feedback technologies to seamlessly 

integrate the digital twin with its physical system to allow for real-time interaction and 

collaboration between them. Results from the project confirms the effectiveness of the proposed 

approach to architecting, creating, and functioning the smart assistance system for transportation 

workers. The delivered prototype model has provided a foundation for improving and 

implementing the safety enhancement system. 
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Chapter 1 Introduction 

1.1 Problem Statement 

Transportation workers have a higher chance than many workforces to be exposed to 

various risks in their workplace (Bureau of Transportation Statistics, 2016). Workers who 

operate vehicles to transport hazardous materials (hazmat) and those in work zones are 

representative examples (PHMSA-Incident Statistics, FHWA-Work Zone Management 

Program). Most hazmat incidents occur because of human error or package failure (Bureau of 

Transportation Statistics, 2016), and the economic, social, and environmental consequences of 

hazmat incidents are usually severe (Office of Hazardous Materials Safety, 2011; 2017). Each 

year over 20,000 workers are injured in road construction work zones and there are about 121 

workplace fatalities accounting for 1.5%~3% of all workplace fatalities annually.  

Protecting transportation workers from risks and improving their ability to operate safely 

in their workplace is important. For example, drivers transporting hazmat must receive initial and 

recurring trainings on general awareness and familiarization of hazmat, safety training on 

emergency response, and measurements to protect them from the exposure to hazmat (PHMSA- 

Hazardous Transportation Training Requirement).  

Yet well-trained transportation workers may still make mistakes or be exposed to risks in 

their workplace. Human beings have bounded abilities in vision, cognition, making judgements, 

and simultaneously handling multiple tasks, particularly in complex, dynamic working 

environments or in response to suddenly occurring situations. Improving their ability to operate 

appropriately and safely in work conditions such as in transporting hazmat and at work zones 

through assisting them in vision, cognition, and making the right decisions, all in a near real-time 

manner, is in particular need considering the quick growth of such work conditions (USDO, 
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2015).  

The rapid development of sensor technology, data processing capabilities, control theory, 

and systems science, has promoted the growth of cyber-physical systems (CPS) that integrate 

those capabilities to create smart connected systems facilitating various industries including 

transportation (Khaitan and McCalley, 2015). Yet not much work has been done to particularly 

build CPS for increasing the safety of the transportation workforce. This research aims to design 

and prototype a smart assistance CPS as a cost-effective solution for assisting transportation 

workers in vision and cognition of their exposure to risks in their workplace, as well as guiding 

them in taking actions to reduce operating errors and the exposure to risks, in a near real-time 

manner. 

Our proposed research is highly relevant to the Mid-American Transportation Center 

(MATC) theme. The prototype of the smart assistance CPS to be delivered at the end of this 

project is a new cost-effective solution for increasing the ability of transportation workers to 

operate appropriately and safely in transporting hazmat, at work zones, and in other work 

conditions. The reduction of incidents at these places, particularly those with severe 

consequences, increases the safety of involved traveling public and general public. The system is 

designed to be smart (i.e., autonomous, independently managed and operated) and mobile, 

allowing for a convenient implementation by various agencies in a wide range of locations.  

1.2 Research Approach 

Figure 1.1 following describes the smart assistance CPS and our approach to developing 

the system. This CPS is designed to have the abilities to sense, analyze, monitor and assist 

transportation workers in real-time for increasing their ability to operate appropriately and safely 

in their workplace. In figure 1.1 the subsystem in blue color provides the sensing and monitoring 
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functions, the analytics function is provided by the three subsystems in red color, and the 

subsystem in green color provides the assistance function. It can be seen that the assistance CPS 

for hazardous material transportation workers is created through building and integrating these 

subsystems. In the following section we briefly summarize the research methods for developing 

the CPS.   

 

 

Figure 1.1 Schematic diagram of the smart CPS for assisting transportation workers in their 
workplace 

 

1.3 Overview of the Research Methods 

In this project we employ methods of system analytics to process and analyze sensed data 

of workers and their workplace to model, understand, and predict worker operations and 

behavior, as well as to evaluate risk exposure in the workplace. The project also explores 

communication and feedback devices to create the ability to deliver the assistance to 
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transportation workers in the workspace. 

1.3.1 Descriptive Analysis of Incident Data  

10 years hazardous material transportation incident data (2008-2017) are retrieved from 

the PHMSA incident reports database. Incident statistics shows that highway/road way 

transportation of hazardous materials has the largest numbers of fatalities, hospitalized injuries, 

and financial damages. Therefore, the incident data analysis of this project is focused on 

discovering characteristics of the incidents that caused fatalities, hospitalized injuries, or both. 

Based on the identified characteristics, a straightforward unfolding strategy is developed to 

identify high chance scenarios of hazardous material highway transportation incidents. Details of 

this descriptive analytic study are presented in Chapter 2. Outputs from the descriptive analysis 

help prioritize the efforts of sensing, monitoring, and assisting transportation workers.  

1.3.2 Sensing and Predictive Sensor Data Analysis  

 To assist a transportation worker in operations, we need to know what the worker is 

doing or attempting to do, what risks the worker might be exposed to in the workspace, and what 

are the unique characteristics of the worker, to name a few. Sensing workers and their workplace 

to recognize worker activities and predict risks they may confront are important research 

components of this project. In this project we use wearable sensors to obtain inertial 

measurement unit (IMU) data of transportation workers during their operations. The data are 

used to train neural network (NN) models for classifying worker actions in operations and 

identifying abnormal worker actions and behavior. We use vision based sensors such as cameras 

to capture videos of the workplace. Then the data are used to fine-tune NN models offline. 

Obtained NN models can process real-time monitoring data to recognize worker actions in 

operations and identify risks that may occur. Details of this predictive analytic study are 
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presented in Chapter 3. 

1.3.3 Prescriptive Analytics and Assistance Delivery 

 Timely and appropriately providing feedback to workers to enhance their awareness of 

risks, or providing operations guidance when needed, would reduce the chance of them being 

involved in, or causing, incidents. This project develops simple, reliable decision methods that 

mainly use thresholds to determine if any information needs to be delivered to transportation 

workers. Important efforts are made to examine and evaluate different options of communication 

(wired and wireless) and feedback devices (audio and visual). The design and prototyping of 

Feedback subsystem are discussed in detail in Chapter 4. 

1.4 Organization of the Final Report 

Following this introduction, Chapters 2-4 present major research efforts of this project, 

including research methods and findings. In Chapter 5 we conclude our studies and suggest 

future works. Literature cited in this report are listed in the References. 
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Chapter 2 Data Analysis for Identifying High Chance Scenarios of Hazardous Material Highway 

Transportation Incidents 

2.1 Introduction 

Hazardous Materials (HazMat) are those that can cause harm to living organisms, the 

environment, or property.  They pose risks when being transported from one place to another. 

The transportation of hazardous materials needs to be operated in a safe manner by following 

safety procedures, such as The Hazardous Material Transportation Act (HMTA) enacted in 1975 

(OSHA). In spite of following all the required safety procedures, incidents still occur during 

many transportation phases. An accident in which an affected person receives immediate medical 

treatment is called an incident. The persons affected include transportation workers, responders, 

and the general public. Incidents occurring in the transportation of hazardous materials may 

cause spillage, explosion, gas dispersion, fire, and environmental damages (ECFR 2018). Many 

of the incidents resulted in significant financial damages, injuries, and fatalities.   

The Pipeline and Hazardous Material Safety Administration (PHMSA) is an agency of 

the United States Department of Transportation, which acquires and maintains the data and 

statistics of hazardous material incidents for all the modes of transportation including air, road or 

highway, rail, and water. The PHMSA statistics of hazardous material transportation incidents 

during 2008-2017 show that highway is the transportation mode with the largest numbers of 

fatalities, hospitalized injuries, and financial damages. Hazardous material highway incidents 

(HMHIs) account for over 95% of all fatalities, 72% of injuries, and 72% of all the damages, of 

all HazMat transportation incidents. 

Protecting people from being hurt or killed by HMHIs is in high priority. Yet during the 

past ten years, there has been over 194 hospitalized injuries and 110 fatalities. Among them, over 
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85% were transportation workers, 12% were the general public, and the rest 3% were emergency 

responders. We are motivated to study these HMHIs that caused either fatalities or hospitalized 

injuries. Lowering the chance of these incidents can effectively reduce financial damages and the 

number of affected people.  

Protecting or assisting workers in the transportation of hazardous materials would lower 

their vulnerability. This requires an investigation of the incident report data from the aspects of 

hazardous materials transported, incident causes, failure type, and so on. Relevant studies were 

found in the literature. Harwood et al. (1989) found the probability of hazmat release would be 

13-15% given an incident involved in the transportation of hazardous materials. Moreover, 35-

68% of the severe hazmat incidents were caused by traffic accidents. Abkowitz et al. (2001) 

discussed the economic impact of HMHIs for the year 1996. The work was able to give a cost 

scenario of the damages and suggest ways to mitigate the losses. Hwang et al. (2001) used the 

Chemical Accident Stochastic Risk Assessment Model (CASRAM) to estimate the statistical 

distribution of potential injuries and fatalities for each representative shipment developed in the 

commodity flow and shipment analysis. Clark and Besterfield-Sacre (2009) developed a decision 

model for mitigating hazmat release during the unloading phase using real data and an 

exploratory data modeling approach. This decision model identified the critical variables using 

an exploratory methodology involving latent class analysis (LCA), log linear modeling, and 

Bayesian Networking. Zhao et al. (2012) used Bayesian networks to prioritize the factors that 

influence hazmat transportation accidents. They compared 94 hazmat incidents to compute the 

posterior probability of each factor using an expectation-maximization learning algorithm. The 

findings and inference were used to take corrective actions and preventive measures to reduce 

the accidents. Yet a methodology is missing in the literature, which can be used to efficiently 
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review any sample of hazmat incidents, characterize the sample, and prioritize projects for 

incident reduction. 

Therefore, this data analysis study has two objectives. Firstly, it will develop an efficient 

method for characterizing the uniqueness of the two samples of HMHIs: the incidents with 

hospitalized injuries (type-H HMHIs) and those with fatalities (type-F HMHIs). Following that, a 

straightforward method is developed for identifying high chance scenarios of type-H and type-F 

HMHIs. The remainder of the chapter is organized as follows. The next section delineates the 

methodology, followed by a section of results and discussions. We conclude the data analysis 

study at the end of this chapter to summarize management implications and outline the future 

work. 

2.2 The Methodology of Incident Data Analysis 

2.2.1 The Data 

The data of HMHIs occurring during 2008-2017 were pulled from the PHMSA incident 

report database (PHMSA). This dataset is named type-A HMHIs in the paper. Then, two samples 

of the data, the type-H HMHIs and type-F HMHIs, were further extracted. The number of 

HMHIs during the ten-year period is 142,330, the number of HMHIs resulting in hospitalized 

injuries and fatalities are 167 and 91, respectively. The left plot of figure 2.1 shows that some of 

the HMHIs caused multiple hospitalized injuries and, therefore, the total number of hospitalized 

injuries is 194. Similarly, the right plot of figure 2.1 states that multiple fatalities were resulted in 

some HMHIs and the total number of fatalities is 110. The number of incidents that had either 

fatalities or hospitalized injuries is 246 because 12 incidents had both fatalities and hospitalized 

injuries. 
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Figure 2.1 2008-2017 HMHIs with hospitalized injuries or fatalities 

 

2.2.2 Data Fields 

Fields of the HMHIs data cover all the information in the incident report Form 5800.1 

(PHMSA). We particularly studied type-H and type-F incidents from the following lens (fields) 

to obtain a fundamental understanding of the incidents: 

• Transportation phases: Let 𝐹𝐹𝑃𝑃 denote the set of transportation phases, and 𝐹𝐹𝑃𝑃={in 

transit, in transit storage, loading, unloading}. 

• HazMat classes: Let 𝐹𝐹𝑀𝑀 denote the set of HazMat classes. There are 22 HazMat classes 

ranging from combustible liquid to very insensitive explosive. Some HMHIs did not 

report the material class, which are put in a category labeled as “blank”.  

• Incident causes: Let 𝐹𝐹𝐶𝐶 denote the set of incident causes. There are 38 causes whose 

code ranging from 501 to 538. Some HMHIs did not release the cause, which are put 

in the category of “cause not reported”. 

• Incident results: Let 𝐹𝐹𝑅𝑅 denote the set of incident results. 𝐹𝐹𝑅𝑅={environmental damage, 

explosion, fire, material entered waterway/sewer, spillage, vapor (gas) dispersion}.  
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These fields are all categorical data. Other fields can be considered as well, depending on 

the scope of the study. 

2.2.3 Pareto-Type Distribution Charts 

We created incident distribution charts for the two samples and their population, 

respectively, on each of the four fields selected. Figure 2.2 is an example that displays the 

distributions of type-F HMHIs and its population, respectively, on the 39 causes. The distribution 

charts we created are Pareto-type in that the categories of each field are arranged in the 

descending order of incident frequency. That is, let 𝑛𝑛𝑖𝑖(𝑘𝑘),𝑗𝑗 denote the number of type-𝑗𝑗  (∈ 𝐽𝐽 =

{𝐴𝐴,𝐻𝐻,𝐹𝐹}) HMHIs that takes the 𝑘𝑘th category of field 𝑖𝑖 (∈ 𝐼𝐼 = {𝑃𝑃,𝑀𝑀,𝐶𝐶,𝑅𝑅}), then 𝑛𝑛𝑖𝑖(𝑘𝑘),𝑗𝑗 ≥

𝑛𝑛𝑖𝑖�𝑘𝑘′�,𝑗𝑗, ∀𝑘𝑘 < 𝑘𝑘′. Pareto-type distribution charts straightforwardly rank the categories of any 

field for each sample. 

Various differences between type-F HMHIs and its population can be seen from the 

pairwise comparison in figure 2.2. Firstly, type-F HMHIs were caused by only ten causes, a 

subset of the 39 incident causes. Secondly, the ten causes relevant to type-F HMHIs do not fully 

overlap with the top ten causes for the population. Thirdly, although some of the 10 causes for 

type-F HMHIs has an overlap with a few of the top 10 causes for the population, they are not in 

the same ranked order in the two distribution charts. These differences indicate type-F HMHIs is 

not a homogenous sample of its population. We created a complete set of pairwise comparisons 

and each comparison is between one sample and its population (or the other sample) on one of 

the four fields. Therefore, there are twelve comparisons (𝐶𝐶32 × 𝐶𝐶41 = 12) in total including the 

one shown in figure 2.2.  
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Figure 2.2 Pareto incident distribution charts of all HMHIs and HMHIs with fatalities  

 

2.2.4 Indices for Measuring Heterogeneity 

We further developed a set of indices for quantifying the heterogeneities observed in each 

of the twelve comparisons. 

2.2.4.1 Overall Overlap  
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We define the overall overlap of two samples of HMHIs on a field to indicate the 

heterogeneity of their distribution supports on that field. Let 𝐹𝐹𝑖𝑖,𝑗𝑗 (⊆ 𝐹𝐹𝑖𝑖) be the distribution 

support of type-𝑗𝑗 (∈ 𝐽𝐽) HMHIs on the field 𝑖𝑖 (∈ 𝐼𝐼). For example, 𝐹𝐹𝑃𝑃,𝐻𝐻 contains transportation 

phases when type-H HMHIs occur. The overall overlap between any two samples of HMHIs, 𝑗𝑗 

and 𝑗𝑗′, are  

 

 𝜈𝜈𝑖𝑖,(𝑗𝑗,𝑗𝑗′) =
𝐹𝐹𝑖𝑖,𝑗𝑗∩𝐹𝐹𝑖𝑖,𝑗𝑗′

𝐹𝐹𝑖𝑖,𝑗𝑗∪𝐹𝐹𝑖𝑖,𝑗𝑗′
 . (2.1) 

 

𝑣𝑣𝑖𝑖,(𝑗𝑗,𝑗𝑗′) takes a value within the segment [0,1]. The smaller the overall overlap, the 

greater the difference between their distribution support on the field 𝑖𝑖.  

2.2.4.2 Intensive Overlap 

We define intensive overlap to characterize the smallest subset of a distribution support 

where two samples of HMHIs largely overlap with each other. Let 𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗 be the set containing 

the top 𝑘𝑘 categories of field 𝑖𝑖 for type-𝑗𝑗 HMHIs. In the comparison between type-𝑗𝑗 and 𝑗𝑗′ 

HMHIs, 𝑘𝑘 is an integer that can take a value from 1 to min {𝐾𝐾𝑖𝑖,𝑗𝑗 ,𝐾𝐾𝑖𝑖,𝑗𝑗′}, where 𝐾𝐾𝑖𝑖,𝑗𝑗 and 𝐾𝐾𝑖𝑖,𝑗𝑗′  are 

the sizes of 𝐹𝐹𝑖𝑖,𝑗𝑗 and 𝐹𝐹𝑖𝑖,𝑗𝑗′ , respectively. For example, 𝐹𝐹𝐶𝐶(3),𝐹𝐹 contains the top three causes for 

type-F HMHIs. The overlap level of type- 𝑗𝑗 and 𝑗𝑗′ HMHIs that are distributed on their owned top 

𝑘𝑘 categories of field 𝑖𝑖 is defined as: 

 

 𝜊𝜊𝑖𝑖(𝑘𝑘),(𝑗𝑗,𝑗𝑗′) =
𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗∩𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗′

2𝑘𝑘−𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗∩𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗′
, (2.2) 

which may vary as 𝑘𝑘 is increasing. Let  
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  𝜊𝜊𝑖𝑖,(𝑗𝑗,𝑗𝑗′) ≡ max
1≤𝑘𝑘≤min {𝐾𝐾𝑖𝑖,𝑗𝑗,𝐾𝐾𝑖𝑖,𝑗𝑗′}

𝜊𝜊𝑖𝑖(𝑘𝑘),(𝑗𝑗,𝑗𝑗′)  (2.3) 

and let 𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) denote the (smallest) 𝑘𝑘 at which 𝜊𝜊𝑖𝑖(𝑘𝑘),(𝑗𝑗,𝑗𝑗′) is maximized. We may further 

normalize 𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) as the following so that the normalized index takes value from the segment [0, 

1]: 

 

 𝛾𝛾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) =
𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′)

min {𝐾𝐾𝑖𝑖,𝑗𝑗,𝐾𝐾𝑖𝑖,𝑗𝑗′}
 . (2.4) 

 

If 𝛾𝛾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) is small, approaching 0, then the intensive overlap, 𝜊𝜊𝑖𝑖,(𝑗𝑗,𝑗𝑗′), is significantly 

different than the overall overlap, 𝜈𝜈𝑖𝑖,(𝑗𝑗,𝑗𝑗′). Given 𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′), we calculate the percentage of type-𝑗𝑗 

HMHIs distributed on the top 𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) categories of field 𝑖𝑖: 

 

 𝛼𝛼𝑖𝑖,(𝑗𝑗,𝑗𝑗′) =
∑ 𝑛𝑛𝑖𝑖(𝑘𝑘),𝑗𝑗
𝐾𝐾𝑖𝑖,(𝑗𝑗,𝑗𝑗′)
𝑘𝑘=1

∑ 𝑛𝑛𝑖𝑖(𝑘𝑘),𝑗𝑗
𝐾𝐾𝑖𝑖,𝑗𝑗
𝑘𝑘=1

 ,  (2.5) 

 

The percentage for type-𝑗𝑗′, 𝛼𝛼𝑖𝑖,(𝑗𝑗′,𝑗𝑗), is similarly calculated. A case with small values of 

𝜊𝜊𝑖𝑖,(𝑗𝑗,𝑗𝑗′), 𝛼𝛼𝑖𝑖,(𝑗𝑗,𝑗𝑗′) and 𝛼𝛼𝑖𝑖,(𝑗𝑗′,𝑗𝑗) indicates a large difference between the two-types of HMHIs on the 

field 𝑖𝑖.  

2.2.4.3 Distribution Distance 

In a pairwise comparison between type-𝑗𝑗 and 𝑗𝑗′ HMHIs, we measure the distance 

between their cumulative distribution functions (CDFs) at any (top) 𝑘𝑘 categories of field 𝑖𝑖, and 

then we use the maximum distance to indicate the shape difference of incident distributions: 
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 𝛽𝛽𝑖𝑖,(𝑗𝑗,𝑗𝑗′) = max
1≤𝑘𝑘≤min {𝐾𝐾𝑖𝑖,𝑗𝑗,𝐾𝐾𝑖𝑖,𝑗𝑗′}

�
∑ 𝑛𝑛𝑖𝑖(𝑚𝑚),𝑗𝑗
𝑘𝑘
𝑚𝑚=1

∑ 𝑛𝑛𝑖𝑖(𝑚𝑚),𝑗𝑗
𝐾𝐾𝑖𝑖,𝑗𝑗
𝑚𝑚=1

−
∑ 𝑛𝑛𝑖𝑖(𝑛𝑛),𝑗𝑗′
𝑘𝑘
𝑛𝑛=1

∑ 𝑛𝑛𝑖𝑖(𝑛𝑛),𝑗𝑗′
𝐾𝐾𝑖𝑖,𝑗𝑗′
𝑛𝑛=1

 �.  (2.6) 

 

𝛽𝛽𝑖𝑖,(𝑗𝑗,𝑗𝑗′) takes value from the segment [0, 1]. A large 𝛽𝛽𝑖𝑖,(𝑗𝑗,𝑗𝑗′) value indicates a difference 

between their distributions on the field 𝑖𝑖 is identified. 

2.2.4.4 Dashboard of the Indices  

The indices indicating the heterogeneity of a sample of HMHIs on a field are summarized 

in figure 2.3. 

 

 

Figure 2.3 Dashboard of indices for evaluating the heterogeneity of an incident sample 

 

2.2.4.5 An Unfolding Strategy for Identifying High Chance Scenarios of Incidents 

Identifying scenarios with large chance of incidents are important because we can 

prioritize the efforts for incident prevention and risk mitigation. We characterize a scenario with 

a combination of the categorical values of selected variables such as transportation phase, hazmat 

class, and incident cause. Each combination is a cell, and we count the number of HMHIs in each 

cell. If there are a large number of cells and HMHIs were widely spread to many of them, it may 
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be difficult to identify high chance scenarios of incidents. The study developed an “unfolding 

strategy” to address this issue. For a sample of HMHIs, we first find a field where the HMHIs are 

intensively distributed on a small number of categories. We skip the categories with very low 

incident frequencies and may merge a few categories into one cell if we believe data in these 

categories share a certain similarity on at least one other field. One or more cells on the first field 

are created and we spread HMHIs into these cells. We further unfold each cell on the next 

selected field to form other cells by following a similar approach. We may unfold one cell at one 

time, and we may also unfold multiple cells at the same time. The Pivot Table function in 

Microsoft Excel can easily accommodate this unfolding strategy for identifying high chance 

scenarios of incidents. 

2.3 Discussions of Incident Data Analysis Results 

2.3.1 Pairwise Comparisons of Incident Samples for Identifying Sample Heterogeneity 

In table 2.1 we performed the twelve pairwise comparisons listed below to verify the 

following assumptions.  

 
Table 2.1 Pairwise comparisons of incident samples 

(𝒋𝒋, 𝒋𝒋′) (H, F) (H, A) (F, A) 
𝑖𝑖 F M C R F M C R F M C R 
𝐾𝐾𝑖𝑖,𝑗𝑗  4 8 10 6 4 12 27 6 4 8 10 6 
𝐾𝐾𝑖𝑖,𝑗𝑗′  4 12 27 6 4 23 39 7 4 23 39 7 

𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗 ∩ 𝐹𝐹𝑖𝑖(𝑘𝑘),𝑗𝑗′ 4 8 9 6 4 12 27 6 4 8 10 6 
𝜈𝜈𝑖𝑖,(𝑗𝑗,𝑗𝑗′) 1.00 0.67 0.32 1.00 1.00 0.52 0.69 0.86 1.00 0.35 0.26 0.86 
𝜊𝜊𝑖𝑖,(𝑗𝑗,𝑗𝑗′) 1.00 0.67 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 0.25 0.71 
𝛾𝛾𝑖𝑖,(𝑗𝑗,𝑗𝑗′) 0.50 0.22 0.13 0.71 0.25* 0.09 0.64 0.14 0.50 0.04 0.13 0.86 
𝛼𝛼𝑖𝑖,(𝑗𝑗,𝑗𝑗′) 0.75 0.90 0.64 0.97 0.48 0.82 0.99 0.95 0.77 0.52 0.55 1.00 
𝛼𝛼𝑖𝑖,(𝑗𝑗′,𝑗𝑗) 0.97 0.97 0.94 0.95 0.44 0.58 0.99 0.40 0.97 0.79 0.94 1.00 
𝛽𝛽𝑖𝑖,(𝑗𝑗,𝑗𝑗′) 0.42 0.50 0.31 0.07 0.06 0.24 0.16 0.54 0.36 0.27 0.44 0.61 

 

• Assumption 1: Type-H and type-F HMHIs are different 
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• Assumption 2: Type-H HMHIs differ than its population 

• Assumption 3: Type-F HMHIs differ than its population 

More importantly, if an assumption is found to be true, we further identify specific aspects on 

which the two samples are different.  

2.3.1.1 Type-H vs. Type-F  

The comparisons between type-H and type-F HMHIs indicate that they can be differentiated 

by incident causes, hazardous materials transported, and transportation phases, which are 

approximately in a decreasing order of the ability of differentiation.   

• Type-H and type-F HMHIs can be clearly differentiated by incident causes. The overall 

overlap between them on the field of causes is only 32%, indicating at least one large 

group of causes is for one type but not the other. In this study, type-F HMHIs were 

caused by a smaller group of reasons (10) whereas type-H HMHIs were caused by a 

larger group (27). There are 18 causes that are reasons for type-H HMHIs, but not for 

type-F. The intensive overlap is 100%, very different from the overall overlap, which is 

based on only 13% of causes (4 out of 38 causes that exclude the “cause not reported”). 

64% of type-H incidents and 94% of type-F incidents share the same top 4 causes: 

Vehicular crash or accident damage; rollover accident; fire, temperature, or heat; and 

human error. Yet the incident distribution of type-H on these causes is different than that 

of type-F, noticing that the maximum distance between their CDFs on this field is 31%, 

measured at their top 4 causes.   

• Type-H and type-F incidents can be differentiated by the hazardous materials transported 

to a certain extent. Both the overall overlap and intensive overlap of them on the field of 

hazmat class are 67%, indicating that at least one group of materials is likely associated 
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with one type of incidents but not the other type. In our study, combustible liquid, 

oxidizer, poisonous gas and poisonous materials are associated with type-H HMHIs but 

not type-F. While the intensive overlap is also 67% (4 out of top 5 classes), it is based on 

just 22% of classes (5 out of 23), and it covers 90% of type-H incidents and 97% of type-

F incidents. This indicates that the majority of type-H and type-F HMHIs are associated 

with a small group of materials and they are corrosive material, flammable combustible 

liquid, flammable gas, and nonflammable compressed gas. However, the distributions of 

the two types of incidents on these material classes are different, indicated by the 50% 

maximum distance of their CDFs on hazmat classes.  

• A certain difference between Type-H and type-F HMHIs is identified from the 

perspective of transportation phases. Both the overall overlap and the intensive overlap of 

them on the field of phases are 100%, but this intensive overlap is based on 50% of 

phases (2 out of 4), and covers 75% of type-H incidents and 97% of type-F HMHIs. The 

majority (97%) of type-F HMHIs occurred during in-transit and unloading; the majority 

(95%) of type-H HMHIs occurred in unloading, in-transit, and loading. The maximum 

distance between their CDFs is 42%, which further confirms the distribution difference is 

present.  

• Type-H and type-F incidents are similar in terms of incident results. Both the overall 

overlap and intensive overlap of them on the field of results are 100%. The intensive 

overlap includes 71% of result categories (5 out of 7 categories), 97% of type-H HMHIs 

and 95% of type-F HMHIs. This indicates the intensive overlap is similar to the overall 

overlap. The maximum distance between their CDFs is small, just 7%, indicating that 

distributions of these two samples on the field of results are also similar.  
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2.3.1.2 Type H vs. All HMHIs 

Type-H differs from its population on the materials transported, incident causes, and results, 

which are approximately in a decreasing order of the ability of differentiation.   

• Type-H HMHIs are associated with 12 hazmat classes, only 52% of the total classes. The 

distribution of type-H incidents on the 12 hazmat classes significantly differs from the 

population distribution, which is indicated by other indices. 

• Type-H HMHIs are associated with 27 causes, about 69% of the total 39 causes. The 

intensive overlap is 79% (i.e., shared 22 out of 25 top causes), which is based on 99% of 

type-H HMHIs and 99% of all HMHIs. Therefore, the two overlaps are similar. However, 

the distribution of type-H HMHIs clearly differ from the population distribution. 

• All results (exclude the category of “results not reported”) happened to type-H HMHIs, 

but the distribution of type-H HMHIs is significantly different than the population 

distribution on results, indicated by other indices.    

2.3.1.3 Type F vs. All HMHIs 

Type-F differs from its population on incident causes, materials transported, results, and 

transportation phases that are approximately in a decreasing order of the ability of differentiation.   

• Type-F HMHIs are associated with only 10 causes, about 26% of the total 39 causes. The 

intensive overlap of type-F with the population is 25% (their individual top 5 causes 

share 2 common causes). The distribution of type-F HMHIs on the 10 causes is 

significantly different from the population distribution.  

• Type-F HMHIs are associated with only 8 hazmat classes, 35% of the total 23 classes. 

The number of type-F HMHIs is the largest when transporting flammable combustible 

liquid, about 79% of type-F HMHIs that occurred. Although this class of material is also 
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the top one class for its population, only 52% of them occurred when transporting it. The 

distribution of type-F incidents on the 8 hazmat classes is different than the population 

distribution.   

• All results (excluding the category of “results not reported”) happened to type-F 

incidents, but the distribution of type-F HMHIs is significantly different than the 

population distribution on results, indicated by other indices.   

• Type-F HMHIs occurred in all of the four transportation phases, but its distribution on 

the four phases is very different than the population distribution, indicated by the 

maximum distance between their CDFs on the phases. 

2.3.2 Identification of High Chance Scenarios of Incidents 

Given the understanding of the HMHIs data attained from the pairwise comparisons, we 

were able to quickly identify high chance scenarios of incidents based on the unfolding strategy. 

Table 2.2 summarizes the top two scenarios in terms of the chance of type-H HMHIs.  

 

Table 2.2 High Chance scenarios of type-H HMHIs 

Scenarios Phases Hazmat Classes Causes Chance 
1(H) Loading 

Unloading 
Corrosive material (class 8) 
Flammable combustible liquid 
(class 3) 
Flammable gas (class 2.1) 

Human error (515) 
Defective component or device (508) 
Fire, temperature, or heat (512) 
Forklift accident (513) 
Deterioration or aging (510) 
Loose closure, component, or device (526) 
Over-pressurized (530) 
Dropped (511) 
Overfilled (529) 
Abrasion (501) 
Broken component or device (502) 

72/167 
(43.1%) 

2(H) In transit Flammable combustible liquid 
(class 3) 

Vehicular crash or accident damage (537) 
Rollover accident (531) 
Fire, temperature, or heat (512) 

21/167 
(12.6%) 
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For example, scenario 1(H) in table 2.2 is the one that type-H HMHIs (caused by 501, 

502, 508, 510, 511, 512, 513, 515, 526, 529, or 530) often occur when loading or unloading 

classes 2.1, 3, or 8 hazardous materials. This scenario occurred at a probability of 43.1% based 

on the past ten-years HMHIs data.  

Table 2.3 similarly summarizes the top two scenarios that concern type-F HMHIs.  

 

Table 2.3 High chance scenarios of type-F HMHIs 

Scenarios Phases Hazmat Classes Causes pct. 
1(F) In transit Flammable combustible liquid 

(class 3) 
Vehicular crash or accident damage (537) 
Rollover accident (531) 
Fire, temperature, or heat (512) 

54/91 
(59.3%) 

2(F) Loading 
Unloadin
g 

Flammable gas (class 2.1) Human error (515) 
Deterioration or aging (510) 
Overfilled (529) 
Over-pressurized (530) 

5/91 
(5.5%) 

 
 

From tables 2.2 and 2.3 it can be seen that scenarios 1(F) and 2(H) are the same scenario 

and 2(F) is a subset of 1(H). This finding suggests that we may merge the four scenarios into two 

scenarios, shown in table 2.4, and do not differentiate the assistances to transportation workers 

with respect to type-H and type-F HMHIs. 
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Table 2.4 High chance scenarios of HMHIs 

Scenarios Phases Hazmat Classes Causes pct. 
1(H/F) Loading 

Unloading 
Corrosive material (class 8) 
Flammable combustible 
liquid (class 3) 
Flammable gas (class 2.1) 

Human error (515) 
Defective component or device (508) 
Fire, temperature, or heat (512) 
Forklift accident (513) 
Over-pressurized (530) 
Deterioration or aging (510) 
Loose closure, component, or device (526) 
Dropped (511) 
Overfilled (529) 
Abrasion (501) 
Broken component or device (502) 
Vehicular crash or accident damage (537) 

77/246 
(31.3%) 

2(H/F) In transit Flammable combustible 
liquid (class 3) 

Vehicular crash or accident damage (537) 
Rollover accident (531) 
Fire, temperature, or heat (512) 

72/246 
(29.3%) 

 
 

2.4 Summary of Incident Data Analysis 

This data analysis study collected 10-years (2008-2017) of data on incidents occurring in 

transporting hazardous materials on the highway (named HMHIs). Two specific samples of the 

data – HMHIs with fatalities (type-F HMHIs) and those with hospitalized injuries (type-H 

HMHIs) – were the focuses of this study. Then, a pairwise comparison based method was 

developed, which can be used to efficiently identify unique features of any incident sample, 

either against its population or in comparison with another sample. The method was 

implemented in analyzing the type-H and type-F HMHIs. Both samples were found to be non-

homogenous samples of their population, and each of the two samples was found to have their 

own unique features. Based on the understanding of the two samples, the study developed a 

sequentially unfolding strategy that divides the space of incidents into subspaces and computes 

the frequency of incidents in the subspaces. Subspaces with a high frequency of incidents are of 

interest. Accordingly the paper presented six scenarios where assistances provided to 
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transportation workers can effectively lower the chance of type-H HMHIs, type-F HMHIs, or 

both of them.  

Following this study, we have planned to implement the developed method in the 

analysis of large size samples (e.g., HMHIs caused by human error) and the prioritization of 

projects for transportation infrastructure improvement. 
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Chapter 3 Sensing and Predictive Sensor Data Analysis 

This chapter presents two studies on processing and analyzing sensor data for safety 

enhancement. The first study aims to help workers better recognize objects or events that may 

cause risks in the workplace; the second study aims to recognize worker actions in operations to 

help intervene on risky behavior, prevent human error, and assist them when needed. 

3.1 Computer Vision based Object Detection for Safety Enhancement  

3.1.1 Background 

Statistics shows that almost 68 percent of the world’s population will live in urban areas 

by 2050 (UN, 2018). The urbanization is creating a huge pressure on the road transportation 

system. More people and vehicles are moving on roads every day. Their safety is one of the most 

important requirements for the road transportation system.  

Meanwhile, growing vehicles and people are creating a huge amount of debris on the 

road which are causing car crashes. In the United States, about 50,695 crashes per year caused by 

road debris were reported in 2011-2014 (Tefft, 2016). Therefore, detecting objects on the road 

(including debris, pedestrians, vehicles, animals to name a few) and warning drivers ahead of 

time would help prevent crashes.  

Deep learning has been playing an important role in object detection. This section 

presents a study that investigated the use of deep learning to process and analyze videos captured 

by a camera mounted on the vehicle to detect any sort of objects in various distances. The 

detection model can be integrated with a feedback device to warn the driver of possible obstacles 

on the road. 

3.1.2 Related Work 

In recent years, computer vision has been employed to help improve road transportation 
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safety. Tian et al. (2015) proposed a model which jointly optimizes pedestrian detection with 

semantic attributes. Their designed model has the ability to learn high-level features of objects 

from multiple data sources. Using video streams captured from surveillance cameras, Song et al. 

(2018) trained deep learning models for pedestrian and car detection, tracking, and action 

recognition. Xu et al. (2017) proposed a cross-modality learning framework for detecting 

pedestrians under adverse illumination conditions. 

Work of Bojarski et al. (2016) was for supporting self-driving cars. Their convolutional 

neural network (CNN) model, trained on a dataset of less than one hundred hours of video, can 

operate a car avoiding obstacles. However, their trained network has some limitations. When a 

lane changes or a turn from one road to another is required, intervention of the human driver is 

necessary. Hane et al. (2015) followed a different approach to the obstacle detection, which 

extracts static obstacles from depth maps computed out of multiple consecutive images. This 

approach fuses obstacle detections over time and between cameras to estimate the free and 

occupied space around the vehicle.  

Some other studies were focused on improving the computational speed. For example, 

Du et al. (2017) proposed a deep architecture that allows for parallel processing of multiple 

neural networks (NNs). A single shot deep CNN proposes pedestrian candidates and then 

multiple deep NNs are used in parallel for refining pedestrian candidates.  

3.1.3 Object Detection for Safety Enhancement 

A proposed safety enhancement system is illustrated in figure 3.1. It can use the car’s 

own integrated sensors such as dashboard camera, radar, and rear cameras. The dashboard 

camera, mounted behind the windshield of the car, continuously captures high resolution images 

and feeds the image data to a deep learning algorithm of object detection. The algorithm 
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semantically detects individual objects coming in front of the car. Given the detection, the 

system proposes steering and brake commands that is compared with the driver’s commands. 

The difference between them is measured. If the difference is higher than a pre-specified 

threshold value, the driver is notified with the measured difference and the proposed new 

command. The steering and brake commands to the vehicle may be automatically adjusted. 

Captured video data are stored in both a local Solid State Drive (SSD) and a cloud storage. Data 

stored in the cloud are used to tune the NN iteratively to improve the prediction quality. Our 

focus in this project is to train a deep learning algorithm for object detection. 

 

 

Figure 3.1 Schematic diagram of computer vision based smart driving system 
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Figure 3.2 shows the system architecture. The sensor module read out data from cameras, 

radar, Global Positioning System (GPS) and wheels, and then feeds the data to the detection 

module. The detection module uses a deep learning NN to segment and detect objects. The 

navigation module uses the GPS data to propose a location for the car and the corresponding path 

control. The vehicle module not only determines the steering angle and the brake control, but 

presents these data in a standard format that can be read by the user interface module. The user 

interface module displays the notification to the driver. All the data are stored in a local SSD 

device and uploaded to a cloud storage.  

 

 
 

Figure 3.2 Schematic diagram of system architecture 

Data storing 

Process control 

Upload 

Navigation 
Module 

Camera Radar GPS Wheel 
Velocity 

Path 
Control 

Steering 
control 

Brake 
Control 

Segmentatio
 

Object 
Detection 

Lane 
Detection 

Sensors module 

D
et

ec
tio

n 
M

od
ul

e 
V

ehicle m
odule 

Notificatio
 

Visualize 

Services User Interface 



27 

 

3.1.4 A Deep Learning Algorithm for Object Detection 

Regional based CNN (RCNN) has been shown to be effective in detecting and localizing 

objects in images. Mask RCNN (He et al., 2017) is one of these CNNs, which can perform 

region segmentation at the pixel level. In this project we chose the Mask RCNN algorithm for 

object detection and localization. Figure 3.3 illustrates the structure of Mask RCNN.  

 

 

Figure 3.3 The structure of Mask RCNN 

 

The backbone of the network is a CNN that works as a feature extractor. The architecture 

of this backbone network is a ResNet (He et al., 2016) based Feature Pyramid Network (FPN). 

This backbone CNN transforms the input image into feature maps. Then a region proposal 

network uses the feature maps to create region proposals. Each region proposal is extracted from 

the feature maps and converted into a fixed-size feature map. Then the RoIAlign operation aligns 

the extracted features with the input image to construct very accurate instance segmentation 
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masks. Following that, Mask RCNN adds a network head (fully convolutional layers) to produce 

the desired instance segmentations. This head branch has two subnetworks, one predicts object 

classes and the other predicts bounding boxes for each class. Besides the head branch, the 

network has an additional branch for predicting binary class masks for each class. The mask 

network branch predicts the mask independently from the network head predicting the class. For 

additional details, we refer interested readers to He et al. (2017). 

3.1.5 An Example 

3.1.5.1 The Training Dataset and the Mask RCNN 

We adopted the Mask RCNN pre-trained on the Microsoft COCO dataset (Lin et al., 

2014). The MS COCO dataset has more than 200,000 labeled images and it contains 1.5 million 

object instances in 80 categories including vehicles, humans, animals, and so on.  

3.1.5.2 Testing Results 

To test the pre-trained Mask RCNN, a testing dataset of 24,000 images was created by 

collecting videos from YouTube. In total 47 video clips with the framerate 30fps has been used 

to create this dataset. The average duration of each video clip is 17 seconds. The dataset contains 

images of traffic incidents captured by cameras mounted in the windshield of the vehicles. 2,850 

images in the dataset were captured under bad weather driving conditions and 1,800 images were 

under low-light conditions. The resolution of the images are 1920 ×1080 pixels.  

 The pre-trained Mask RCNN successfully detected almost all cars and pedestrians in 

normal daylight driving conditions. Figure 3.4 shows some examples of detecting cars and 

pedestrians under a normal daylight condition driving conditions. Red masks in the figure 

indicate regions of predicted objects. False positive detections were observed, for example, the 

traffic lights in figure 3.4. 
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Figure 3.4 Detection results under a daytime driving condition 

 

The Mask RCNN detector was also tested for bad weather driving conditions. It is able to 

recognize objects under such conditions but false detections were observed. Figure 3.5 illustrated 

the detection results under a bad weather condition. The leftmost image of the figure contains a 

false negative detection, where the detector couldn’t detect a car. On the other hand, the detector 

mistakenly detected a region from the sky as a car in the rightmost image, which is a false 

positive detection. The middle image contains two vehicles and the detector detected both the 

vehicles. 

 

 

Figure 3.5 Detection reults under a bad weather condition 
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Figure 3.6 further illustrates results of testing the Mask RCNN under a night driving 

condition. The leftmost image of the figure contains a false negative detection, where the 

detector couldn’t detect a car. However, the following two frames contain positive detection. All 

the objects are detected in both of these frames. 

  

 

Figure 3.6 Detection results under a nighttime driving condition  

 

Besides vehicles, the Mask RCNN is also capable of detecting animals on the road, as 

figure 3.7 illustrates. 

 

 

Figure 3.7 Animal detection 

 

3.1.5.3 Detection Quality Assessment 

The detection of an object in an image is represented as a bounding box. The bounding 

box contains both the object and some portion of the background, making it difficult to 
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determine if the detection is positive or negative. This issue is addressed by calculating the 

Intersection over Union (IoU) metric: 

 

 𝐼𝐼𝐼𝐼𝐼𝐼 = Area of Overlap
Area of Union

   (3.1) 

 

In the numerator the area of overlap between the prediction bounding box and the 

ground-truth bounding box is computed. And in the denominator the area encompassed by both 

boxes is computed.   

To evaluate the detection quality of the Mask RCNN, an overlapping grid of ground truth 

objects and their predictions were calculated for the various driving conditions that the project 

has tested. In each overlapping grid, ground truth classes are listed on the horizontal axis; on the 

vertical axis the predicted classes are listed in the decreasing order of detection probability (i.e., 

the number in the bracket after each detected object). The grid describes the overlapping degree 

of the predicted objects with their respective ground truth. A 0.5 IoU threshold was used in the 

evaluation. That is, a prediction is correct if the IoU value of it is greater than 0.5. 

Figure 3.8 (a) shows an image with detected objects under a normal daylight driving 

condition and figure 3.8 (b) displays the corresponding overlapping grid.  In this test, all objects 

are detected correctly, with an IoU value greater than the detection threshold.  

When testing the Mask RCNN for bad weather driving conditions, misclassified 

detections were observed. Figure 3.9 (a) shows the detection result under a bad weather 

condition and figure 3.9 (b) gives the corresponding overlapping grid. From the grid box it is 

observed that a car was misclassified as a truck and the model also failed to detect a car. 
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(a)                                                                                  (b) 

Figure 3.8 Detection result in a daylight driving condition (a), the overlapping grid (b) 

 

 
(a)                                                                          (b) 

Figure 3.9 Detection result under a bad weather condition (a), the overlapping grid (b) 

 

The Mask RCNN can recognize objects on the road at night. Figure 3.10 (a) illustrates 

the detection result under a nighttime driving condition. The corresponding overlapping grid in 

figure 3.10 (b) further shows that multiple cars were not detected. 
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Figure 3.10 Detection result under a nighttime driving condition (a), the overlapping grid (b) 

 

3.1.6 Conclusion 

This section presented the use of Mask RCNN, a deep learning algorithm, for the 

detection and segmentation of objects from road scene videos. The Mask RCNN has been pre-

trained on a large dataset containing 1.5 million images. The trained Mask RCNN was evaluated 

through testing it under multiple driving conditions. Detection results were in good quality under 

daylight driving conditions. False detections were observed when testing the model in bad 

weather and nighttime driving conditions. Improvement of the detection quality, particularly in 

low visibility conditions, would be required in order to provide reliable prediction results for 

assisting drivers in making decisions. 

3.2 Worker Action Recognition using Wearable Sensors 

3.2.1 Background 

Safety has always been an important requirement for the transportation system (Raso et 

al., 2018). How transportation workers operate in their work have a huge impact on the safety of 

themselves and other people in the system. To be able to recognize and predict actions of 
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transportation workers in any phases of transportation would help prevent risky operations and 

human errors, thus reducing injuries, fatalities, and financial damage.  

Relevant data of workers are needed to comprehend their actions in their workplace. 

Recent advancement in sensing technology has attracted the attention of researchers and 

practitioners. Sensors have been broadly used in many areas including manufacturing, 

healthcare, and transportation to name a few. We can deploy a suit of sensors in the workplace to 

collect meaningful data of workers and their interaction with the workplace. Different sensors 

such as vision based sensors, wearable sensors, and radio frequency identification (RFID) based 

sensors have their own merits and limitations. Vision based sensors, as Section 3.1 has discussed, 

have relatively high computing and storage requirements in data processing and modeling.  RFID 

based sensors requires large infrastructure (Lara et al., 2013). Wearable sensors can be easily 

deployed to collect data of workers in operations (Nath et al., 2017). This section presents a 

study of using wearable sensors to capture, analyze, and model transportation worker actions in 

operations. Workers, wearable sensors, and machine learning methods are integrated to create 

the ability to recognize and predict worker actions. The output can be entered to the feedback 

system to generate assistance or prevention commends for workers.  

3.2.2 Related Work 

In recent years human activity recognition has become an important research topic. Many 

studies have presented remarkable results of activity recognition using wearable sensors data. 

Zhang and Sawchuk (2013) presented a human activity recognition framework that is based on 

wearable inertial sensors, compressed sensing, and sparse representation theory. Anguita et al. 

(2012) developed a multiclass classifier using Support Vector Machine (SVM). Catal et al. 

(2015) proposed a model of activity recognition which combines J48, logistic regression, and 
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multi-layer perceptron algorithms. A comprehensive study of wearable sensor based human 

activity recognition is in Shoaib et al. (2015), which delineated the usefulness of gyroscope with 

an accelerometer for classifying activities. 

Yet, very limited work has been done which uses deep learning in activity recognition. 

Jiang and Yin (2015) assembled signal sequences of accelerometers and gyroscopes as activity 

images and, accordingly, employed Deep Convolutional Neural Networks (DCNN) to 

automatically learn optimal features from the activity images. Ha & Choi (2016) presented an 

approach to human activity recognition using CNN wherein they employed both the partial 

weight sharing and full weight sharing for the CNN models. Zeng et al. (2014) also proposed a 

CNN model which can automatically extract discriminative features of activities. They also 

applied the partial weight sharing technique to the processing of accelerometer signals. Nweke et 

al. (2018) provided an in-depth summary of deep learning methods for processing mobile and 

wearable sensors for human activity recognition.  

3.2.3 Action Recognition using Deep Learning 

Even though conventional pattern recognition has made tremendous progresses towards 

human activity recognition, it has several drawbacks: 

1. The selection of features to extract is heuristic and heavily relies on human 

experience and domain knowledge. The specific knowledge can help in certain tasks 

but not for more general tasks. 

2. Extracted features are shallow. This can only be used to recognize low level activities 

like walking and running, but not context-aware activities. 

3. It requires a large amount of labeled trained data. Therefore, the method is 

undermined in unsupervised learning.  
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Deep learning is able to overcome those limitations. Figure 3.11 highlights the difference 

between conventional and deep learning approach.  

 

 
(a): Conventional approach 

 

 
(b): Deep learning approach 

 
Figure 3.11 Conventional vs deep learning methods in activity recognition  

 
 

3.2.4 Data Preparation 

3.2.4.1 Data Collection 

To establish our logistic activity dataset, five actions commonly performed in logistic 

operations are chosen, namely: waiting, loading into trolley, pushing trolley, carrying load, and 

unloading from trolley. Table 3.1 lists these activities and a glimpse of them are shown in figure 

3.12. 

 

Table 3.1: List of tasks for logistic operation 

Serial No. Task name 
1 Waiting 
2 Loading into trolley 
3 Pushing trolley 
4 Carrying load 
5 Unloading from trolley 

 

 



37 

 

         
(a)                                          (b  )                                       (c) 

     
(d)                                              (e)   

Figure 3.12 Common five logistic actions: (a) waiting, (b) loading the load to trolley, (c) 
pushing the trolley, (d) carrying the load, (e) unloading the load 

 

Four subjects were invited to perform the five actions listed in table 3.1. A Myo armband, 

shown in figure 3.13, is embedded with IMU and EMG sensors. Two armbands were used in this 

study to collect data of participating subjects, with one armband worn on the left hand and the 

other on the right hand of each worker. One computer can collect data only from one armband at 

a time. Therefore two computers are used to collect data from two armbands.  The IMU of the 

armband returns four types of signals (four channels of accelerations, three channels of angular 

velocities, four channels of orientations, and three channels of orientation Euler) at a sample rate 

of 50Hz. All channels of data were transmitted to receiving computers via a Bluetooth device.  
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Figure 3.13 Myo armband  

  

3.2.4.2 Data Pre-Processing 

The duration of each activity ranges from 2 to 6 seconds, not at a fixed length. Fixed 

length inputs are required to feed the data into a NN. Therefore, the collected IMU signals were 

converted into fixed length activity images with some preprocessing. The 13 channels of IMU 

signals are aligned horizontally, as figure 3.14 shows.  

  

  
(a) (b) 

Figure 3.14 Horizontally stacking the raw IMU signals (a), stacked IMU signals (b) 
 

Each activity image is a 100 rows by 13 columns matrix that contains 2 seconds of IMU 

time series data, as figure 3.15 demonstrates. Figure 3.16 shows the method of generating 

activity images from raw IMU sensor data. Activity images were created by moving a sliding 
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window of size 100 rows by 13 columns along the row direction at a step size of 50 rows. An 

activity image was extracted from the IMU time series data at each stop. Therefore, two 

successive activity images have a 50% overlap.  

 

 

Figure 3.15 Preparing activity image from raw IMU signal 
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Figure 3.16 Window width and overlap ratio of activity windows 

 

The worker activity dataset we created for this project contains five actions performed by 

five subjects. Each subject performed all of the five actions ten times. Therefore the activity 

dataset contains 200 samples of actions in total. However, some subjects were faster in their 

operations whereas others were comparatively slower. Therefore, the time taken to complete the 

activities varied subject to subject. Consequently, the number of activity images per action 

differs from person to person. 

3.2.5 Deep Learning Model for Activity Classification 

A CNN model, illustrated in figure 3.17, was trained as a classifier of actions. It takes 

each activity image as an input and provides the prediction in the form of the probability 

distribution on the five actions. Values of each activity image were normalized to be within the 

interval [0, 1] before being fed into the 3×3 convolutions of CNN architecture. After two 

convolutions, a max-pooling operation with a 2×2 filter down-sampled the dimension of the 

feature map into half of the input size. Then again after two consecutive convolutions, second 

max-pooling operation down-sampled the feature map into the size of 25×3×128. Afterwards, 

the feature map was flattened into a feature vector of 9600 elements, which was subsequently 

densified to 256 feature vectors with a fully connected layer. Another fully connected layer is 
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used to further densify the feature vectors to the dimension of 5, that is the number of classes. 

This 5-dimensional score vector 𝑆𝑆𝑗𝑗 (𝑗𝑗 = 1,2 … . . ,5) depicts the predicted classification 

probabilities using a softmax function as follows:  

 

  𝑃𝑃(𝑦𝑦 = 𝑗𝑗) =  𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑗𝑗)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑘𝑘)5
𝑘𝑘=1

  . (3.2) 

 

 

Figure 3.17 The CNN architecture for classification 

 

Training a CNN model is basically about determining the optimal weights 𝑤𝑤 for the 

network by minimizing a cost function. In this experiment the cost function is a categorical cross 

entropy. Dropout regularization was used to reduce the overfitting issue. 

3.2.6 Evaluation of Experiment Results 

3.2.6.1 Evaluation Methods 

A commonly used evaluation metric, named accuracy, was used to evaluate the 

classification performance in this study. This metric is chosen because it is very intuitive, simple 

to understand, and easy to compute. Accuracy is computed as: 
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 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

,  (3.2) 

Where, TP, TN, FP, and FN stand for True Positive,  True Negative, False Positive, and False 

Negative, respectively. 

 

Two validation methods were used in this study: the train-test split (TTS) and Leave-

One-Out (LOO), as figure 3.18 illustrates. The TTS evaluation used 80% data of every 

individual action of the four subjects as the training dataset and the remaining 20% data as the 

testing dataset. The classifier was trained using the training dataset, and its accuracy was 

measured on the test dataset. In TTS the data of each subject was present in both training and 

testing; therefore, the classifier learned the discriminative features of all subjects during the 

training. That is, the TTS evaluation method is to determine the performance of a trained model 

on the new data of the same group of subjects. The LOO evaluation used the data of three 

subjects as the training dataset, leaving out one subject for testing. The LOO evaluation method 

is to determine the performance of a trained model on new subjects. The LOO evaluation was 

repeated five times and each time a different subject was tested. The average performance on the 

five repetitions was used as the performance measurement of the classifier. 

 

 

Figure 3.18 Illustration of TTS and LOO validation methods 
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3.2.6.2 Implementation of Fusion Method 

As figure 3.12 shows, all five actions are involved with both hands, which indicates that 

both sources of data contain valuable information for providing discriminative features for action 

classification. Therefore, these two sources of data were combined and hopefully the fusion 

method would yield better classification results. The fusion strategy is illustrated briefly in figure 

3.19. 

 

 

Figure 3.19 Illustration of average fusion method 

 

Two identical CNN models are trained on two sources of data – RH-IUM is the model 

trained on the right hand IMU data and LH-IMU is the one trained on the left hand IMU data. 

For every activity image, each of the two models provides its own prediction result in the format 

of a probability distribution on the 5 actions, as figure 3.19 shows. For example, the RH-IMU 

model predicts that the action is action-1 with a probability 0.6 and so on. The two models 

provide two different predictions. The average of the two probability distributions gives the final 

prediction.   

3.2.6.3 Comparison of Model Performance using the TTS Validation Method 

The 80% train -20% test TTS method was repeated for five times. In each run of the test, 

20% of data were randomly sampled and used as the test dataset. The average of the five results 

Action-1 Action-2 Action-3 Action-4 Action-5

Right Hand(RH) 
IMU data

CNN Model 0.6 0.1 0.1 0.06 0.06 Action-1

Left Hand(LH) 
IMU data

CNN Model 0.2 0.4 0.15 0.08 0.06 Action-2

Average Fusion 0.4 0.25 0.125 0.07 0.06 Action-1

Data Type Architecture Predicted Action
Prediction Probabilities for 5 Actions
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serves as an estimate of the classification accuracy.  From figure 3.20 (a) it can be seen that the 

fusion method provides a little better accuracy than the other two models, but not at statistical 

significance. We further compared the three models as the action level, shown in figure 3.20 (b). 

When the performance difference between the LH-IMU and RH-IMU models is small, fusion 

method performs better (e.g., in recognition of action-3 & action-4 in this experimental study). If 

the difference between the LH-IMU and RH-IMU models is large, the fusion model may not 

perform better than every individual model (e.g., in recognition of action-1, -2, and -5 in this 

experimental study). 

 

 

(a)                                                               (b) 

Figure 3.20 Model performance comparison (a), the comparison at action level (b) 

 

To learn details of misclassification, recognition accuracy (recall) and precision were 

calculated, displayed in figure 3.21. In both matrices the rows represent the ground truth actions 

and the columns represent the predicted actions. The diagonal elements count the correct 

classifications. From both matrices we can see that, the performances of action recognition on 

action-1, action-3, and action-4 were satisfactory. Most misclassifications occurred between 
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action-2 and action-5. The reason for the misclassification is action-2 (loading into trolley) and 

action-5 (unloading from trolley) are similar with each other.   

 

 
(a) 

 
(b) 

Figure 3.21 Recognition accuracy (recall) (a), precision (b) 

 

3.2.3.4 Comparison of Model Performance using the LOO Validation Method 

We also evaluated the three models using the LOO method. The performance of any 

model evaluated using the LOO method is lower than that evaluated using the TTS method, as 

figure 3.22 shows. This is due to the fact that the testing dataset in LOO method is from a new 

subject who has unique behavior not appeared in the training dataset. Figure 3.22 further shows 

that the performances of the fusion model evaluated using the two methods are close to each 

other, indicating that fusion is helpful when a trained model is used to recognize activities of new 

subjects. 

We further compared the performances of the three models at the subject level and action 

level. At the subject level, the fusion model outperformed the RH-IMU model and the LH-IMU 

model for recognizing actions of each subject. At the action level, the fusion model is better than 

Action-1 Action-2 Action-3 Action-4 Action-5
Action-1 84.83% 7.30% 1.12% 2.25% 4.49%
Action-2 2.73% 44.09% 5.91% 10.00% 37.27%
Action-3 0.61% 1.23% 97.85% 0.00% 0.31%
Action-4 0.00% 1.85% 0.00% 98.15% 0.00%
Action-5 2.73% 44.09% 5.91% 10.00% 37.27%

Action-1 Action-2 Action-3 Action-4 Action-5
Action-1 91.52% 6.02% 0.58% 1.28% 4.62%
Action-2 3.64% 44.91% 3.75% 7.03% 47.40%
Action-3 1.21% 1.85% 91.93% 0.00% 0.58%
Action-4 0.00% 2.31% 0.00% 84.66% 0.00%
Action-5 3.64% 44.91% 3.75% 7.03% 47.40%
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the other two models in recognizing actions 1, 3, and 4. When recognizing actions 2 and 5, the 

two actions with relatively higher degree of confusion, the fusion model had similar performance 

as the RH-IMU model. 

 

 

Figure 3.22 Comparison between two validation methods 

 

  

(a)                                                              (b) 

Figure 3.23 Comparison of model performance evaluated using the LOO evaluation: subject 
level (a), action level (b) 
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3.2.7 Conclusion 

In this study we used Myo armbands to collect the IMU data of workers and developed 

two CNN models, the RH-IMU model and LH-IMU model, to recognize worker actions in the 

loading and unloading operations. The dataset we obtained for this study contains five actions of 

four subjects in ten repetitions. Model fusion was further applied to improve the performance of 

the CNN models. The use of model fusion yields the third CNN model of this study. Both the 

TTS method and the LOO method were used to evaluate the performance of the three models. 

Although both LH-IMU and RH-IMU models are found to be less capable in the LOO evaluation 

than in the train-test split evaluation, model fusion can help improve the ability to recognize 

actions of new subjects. Challenges are present in recognizing actions with similarity.  

In this study only the IMU data were used for action recognition. An immediate 

extension of the current work is to add the EMG data to improve the ability of action recognition. 

In the LOO evaluation, low performance was observed in correctly recognizing actions with 

similarity. Fine tuning the model using a small amount of data of new subjects would help 

improve the model performance in recognizing the actions of new subjects. 
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Chapter 4 Feedback Systems for Enhancing Risk Awareness: System Design and Prototyping 

4.1 Introduction 

The rapid development of sensing, communication, and cloud computing technologies 

has promoted the growth of connected smart systems for various applications. This chapter 

presents a study of developing feedback systems for enhancing the risk awareness of workers. 

Two prototype systems that use different technologies were developed and evaluated in this 

project. Both systems trigger the feedback to a worker according to define distances of the 

worker from the hazardous material (hazmat). The systems can be easily modified to adapt to 

other mechanisms of triggering the feedback. 

4.2 The BLE Based System 

4.2.1 System Design 

The Bluetooth Low Energy (BLE) based system, illustrated in figure 4.1, is composed of 

three components: a BLE based proximity sensor, safety information, and a mobile device being 

used by the worker which can receive the information. The sensor is physically attached to or 

within a short range of the hazardous material. The safety information is then either presented as 

a local notification or a webpage. The sensor attached to the hazardous material is associated 

with the safety information of the material through the cloud management system of the sensor. 

When a worker with an associated mobile device enters the defined broadcast range of the 

proximity sensor, the sensor detects the worker and pushes the safety information to the 

receiving device. By reviewing the provided information, the worker’s awareness is reinforced of 

the presence of the hazardous material, potential risks of transporting the material, and safety 

guidelines related to the material in question.  
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Figure 4.1 Schematic diagram of the BLE based feedback system 

 

4.2.2 System Prototyping 

4.2.2.1 Safety Information 

 The safety information about a hazmat may include the description of the hazmat, 

personal protection equipment (PPE) required, and safety operation guidance. In this project we 

have two versions of safety information: detailed information and brief information. 

 Detailed safety information. We presented the detailed information of each class of 

hazmat in a webpage illustrated in figure 4.1 (a).  The webpage for each class of hazmat mainly 

includes the following three sections: 

• Key Alarm Message: a brief statement and a standard dangerous product classification 

icon to prompt workers approaching this area. 

• Check List of Required PPE: according to the category of hazmat stored in the area, 

required PPE and corresponding icons are listed so that the workers can check by 

themselves if all required PPE have been worn appropriately. 
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• Information on the Specific Class: the hazmat class definition, subcategories of hazmat 

within the class, and commonly transported hazmat in this class. 

A link to section three was embedded in the statement of section one in the webpage. 

Those who come in contact with the area on a normal basis should be familiar with the nature of 

the hazmat they are approaching, so there is not as great of a need to see section three. However, 

workers who are not familiar with, or cannot recognize, the nature of the hazmat in question are 

able to jump to this section quickly through the provided link in the first section. 

The Uniform Resource Locator (URL) of a webpage is the reference address that 

identifies where the webpage is located on the internet. The URL is a vital part of the feedback 

system since it provides access to the webpage intended to be displayed to the worker. The URL 

is pushed to the receiving device of the worker through a mobile app. Figure 4.2(b) displays the 

notification generated by a mobile app we developed for this project and figure 4.2(c) is the 

nearby notification generated by Physical Web, an app provided by Google. 

 

                   

(a)                                      (b)                                               (c) 

Figure 4.2 Safty information webpage (a), local notifiation (b), Physical Web notification (c) 
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Brief safety information. If workers choose to not click the link to the webpage, they will 

not view the safety information in the webpage. Therefore, the other approach is to directly 

present brief safety information as notifications of a mobile app and push the notifications to the 

receiving devices of workers. Figure 4.3 illustrates three short notifications displayed by the 

mobile app in the receiving device. 

 

                   

(a)                                  (b)                                    (c) 

Figure 4.3 Notifications: when entering the inner zone of hazmat (a), when leaving the inner 
zone of hazmat (b), and when leaving the outer zone (c) 

 

4.2.2.2 Proximity Sensor 

We chose BLE proximity beacons produced by Estimote®. A beacon is a tiny device that 

broadcasts Bluetooth data packets understood by compatible receiving devices. The data packets 

are random sets of letters and digits, which contain the unique identity of the beacon and other 

data. The exact look of those packets and their capabilities are determined by certain protocols 

such as Eddystone, Estimote Monitoring, or iBeacon. Almost every iOS and Android Bluetooth-

enabled device is compatible with each of these protocols. 
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Beacons broadcast them with a certain strength in all possible directions. Therefore, we 

can select and define distances for receiving specific data packets. For example, when a worker 

with a mobile device enters a zone defined by a distance we select, a corresponding beacon 

packet is sent to the designated mobile app installed in the receiving device. When the packet 

arrives, the app is immediately launched and it asks the Estimote Cloud for the instruction on 

what to do about this particular beacon. The Cloud, in milliseconds, returns the necessary 

information and the app performs the programmed activity, which in this app is to display a 

notification.  

We can manage settings of beacons in Estimote Cloud displayed in figure 4.4, which 

includes, but is not limited to, monitoring the beacon’s battery power, transmitting power, and 

location. In addition, the time stamp of when workers are near the beacon can be recorded and a 

statistical graph can be automatically generated.  

 

 

Figure 4.4 Screenshot of the Estimote Cloud 

 

4.2.2.3 Mobile Applications 

 A beacon needs to be connected to a mobile app that performs designed activities to 
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interact with workers. We can either build our own ISO/Android app or use one of the available 

third-party apps. In this project we used Physical Web provided by Google and also developed 

our own ISO app. 

Physical Web. It is a mobile app which can receive URL messages sent by beacons. For 

Android devices, the app needs to be downloaded from Google Play. When the screen is locked, 

the user receives a push message and is able to quickly reach to the webpage to review the 

provided information. At the same time, Android users who do not install the application can 

receive URL push messages by opening the Bluetooth and location functions. For Apple devices, 

it is necessary to download the application through Apple’s App Store, as an installed app is the 

only way one can access the URL information from the beacon. In addition, Physical Web has 

the ability to not only find the signal from the beacon, but also the BLE signals of all nearby 

devices, such as the Bluetooth signal of a printer. If there were not a large number of other 

devices in the application environment, this situation did not have a substantial impact on the 

beacon users. 

Self-developed App. As a further measure of testing the proximity beacons, we developed 

an app that can display various notifications (see fig. 4.3) depending on where the worker is. The 

app defines an inner zone and an outer zone of the hazmat: the average radius of the inner zone 

and outer zone are 1.5 meters and 5 meters, respectively. Designers can customize the number of 

zones and their ranges based on specific needs of implementation. When the worker enters or 

leaves a zone, a corresponding notification is displayed on the interface of the app. This app was 

then further updated to display the URL as well, as figure 4.2 (b) illustrates, similar to what the 

Physical Web application provides. 

4.3 Arduino Based System 
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4.3.1 System Design 

The second prototype system, as illustrated in figure 4.5, is composed of an Arduino 

development board, a ranging sensor, and one or multiple feedback devices. The ranging sensor 

is attached to the Arduino board and the board is with the hazmat. Brief safety information of the 

hazmat has been saved in the board. When a worker enters a zone near the hazmat, which is 

defined by specifying the detectable range of the ranging sensor, either the safety information is 

displayed in a displaying device or an alarm is provided by the buzzer.   

 

 

Figure 4.5 Schematic diagram of the Arduino based feedback system 

 

4.3.2 System Prototyping 

The prototype of the Arduino based system is displayed in figure 4.6. 

4.3.2.1 Ranging Sensor 

We chose the Ultrasonic sensor HC SR 04 that provides from 2 cm to 400 cm non-

contact measurement function. The measurement precision is up to 0.3cm.     

4.3.2.2 Receiving devices 

 Receiving devices are used for either visually displaying safety information or 

broadcasting an alarming sound to workers. This project tested three types of receiving devices: 

a buzzer, a light emitting diode (LED) screen, and a smart mobile phone. A Bluetooth HC 05 
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unit was used for transmitting the safety information to the mobile phone of the worker. As 

figure 4.5 shows, the buzzer, LED screen, and the Bluetooth unit are connected to the Arduino 

board using wires.  

4.3.2.3 Arduino Uno Board 

Arduino Uno is the best board to get started with electronics and code the output 

displayed on receiving devices. We used the open-source Arduino software (IDE) to write code 

and upload it to the board. The language we used to compile the code is C. First, the board is 

programmed to be able to trigger the buzzer, display a message on the LED screen, or transmit 

the message to the mobile phone through the Bluetooth unit when the worker enters a pre-

specified detectable range of the ranging sensor. There are three major things that need to be 

specified in programming: (1) define the pin, (2) set up the input and output, and (3) write the 

function of the program. For example, the input is the distance measurement of the ultrasonic 

ranging sensor, the output is a message “in the range of hazmat class 1” to be displayed on the 

LED screen, and the function is to trigger the output when a worker enters the detectable range 

of the ranging sensor.   

 

 

Figure 4.6 The prototype of Arduino based system 
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Then, the board is connected to the computer to get the complied program uploaded. 

When uploading the program, it is important to disconnect the Bluetooth unit from the board 

before uploading the program. After the program is uploaded successfully, the Bluetooth module 

is reconnected to the board. Otherwise, program uploading would fail. 

4.4 Comparison 

The following is the comparison of the two systems in terms of the technologies they use, 

which is also summarized in table 4.1.  

• BLE beacon has considerable reduced power consumption and, therefore, it can be 

widely deployed. The ultrasonic ranging sensor requires stable power supply and 

consumes more power than BLE. But the measurement precision of ultrasonic 

ranging sensor is much higher than BLE beacon.  

• Smart mobile devices are able to display detailed information and can interact with 

users. The use of smart mobile devices as receiving devices requires Bluetooth 

wireless communication. The buzzer and LED screen can deliver only simple 

information and, thus, they are usually set up as stationary devices connected to 

power sources.  

• The BLE based system stores most data such as beacon information, safety 

information, beacon functions, and commands in the cloud. The Arduino based 

system stores most information in the board. The cloud is much more capable than 

the board in terms of information storage and processing, computation, analytics, and 

so on. 

• Codes for the BLE based system was developed using Xcode in this project and codes 

for the Arduino based system was developed using C. Both system requires the 
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efforts of programming. 

 

Table 4.1 Comparison of the systems by technologies 

 BLE based System Arduino based System 
Sensor BLE Estimote proximity beacon Ultrasonic ranging sensor HC-SR04  
Communication Bluetooth wireless communication Wire communication mainly, 

Bluetooth can be used 
Receiving 
devices 

Smart phone Buzzer, LED screen, smart phone 

Information 
Storage, 
processing and 
so on 

Beacon Cloud Arduino board 

Development 
environment 

Xcode Arduino IDE 

 
 

4.4 Conclusions  

This chapter presented a study of designing and prototyping two feedback systems for 

enhancing workers’ awareness of risks when approaching hazmat. While each of the two 

prototype systems certainly provide the desired function of enhancing risk awareness to a certain 

extent, their strengths and limitations were mainly seen from the perspective of technologies they 

use. BLE beacons are powered by batteries and have very low power consumption. Therefore, 

they can be widely deployed with minimal maintenance. The ultrasonic ranging sensor used in 

this study does not have this advantage. It is, however, more accurate than a BLE beacon in 

measuring distance. Cloud computing offers superior capabilities in storage, software, analytics, 

security, and extensible architecture allowing developers and clients alike to create functionality 

tailored to the system requirements at hand. The aforementioned set of features is not available 

when using the Arduino development board due to the limited capabilities of the platform. Smart 

devices carried by workers are mobile devices that can move with the workers, display rich 
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information to them if needed, and interact with them. Buzzers and LED boards can only provide 

simple feedback to workers, and lack mobility as they are connected to the Arduino board using 

wires.  

The analysis of each system’s strengths and limitations within this study suggest ways of 

improving the smart system design which include: augmenting the distance measurement 

accuracy of BLE beacons, improving the modularity of the simple feedback devices, and 

protecting the privacy of each worker’s smart mobile device(s) while collecting data to utilize the 

system. 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions  

Results and findings from this project allow for drawing the following conclusions and 

recommendations on developing assistance systems for enhancing the safety of transportation 

workers. 

5.1.1 System Architecting 

In this project we architected a system for assisting hazmat transportation workers as a 

CPS. Transportation workers and their workplace form the physical system that we would like to 

understand, analyze, and assist. We created the “digital twin” of the physical system using 

methods of system analytics, including descriptive data analysis, predictive machine learning, 

and decision analysis. The physical system and its digital twin are seamlessly synergized as a 

CPS through sensing, communication, and feedback technologies. Results of this project 

demonstrate that architecting the smart assistance system as a CPS is appropriate in that the 

desired capabilities are obtained, including the real-time understanding, reasoning, and learning 

of transportation workers and their workplace, as well as the optimization of the intervention and 

assistance to workers.  

5.1.2 System Analytics 

From this project we found that an important driver of smartness is the digit twin of the 

physical system. The quality of the digit twin determines how much we can help the physical 

system. We implemented analytic methods, which are either fundamental or relatively mature, to 

quickly build the digital twin of the physical system that we would like to inference, analyze, and 

assist. Descriptive data analysis and a data unfolding strategy were used to identify high chance 
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scenarios of HMHIs. While these methods are fundamental, in this project they have been tested 

to be effective in delivering the needed information.  

Activities of hazmat transportation workers have not been widely studied. Therefore, 

existing activity recognition models may not do a better job than NNs specifically trained using 

the data of hazmat transportation workers. We trained our own NNs on small datasets collected 

by the project, which recognize worker actions in their daily operations with reasonably good 

quality. Yet it is very reasonable to fine-tune existing NN models for classifying and recognizing 

elements in the workplace (vehicle, humans, tools, and equipment to name a few), because these 

elements are broadly present in many public large datasets used for training those existing 

models.  

Providing workers assistance only when they need would maximize the effectiveness of 

the assistance system and minimize the distraction of them from unnecessary help. To serve this 

purpose, simple decision rules were tested in this project, which mainly use thresholds to control 

the trigger of assistance. These threshold based rules are verified to be effective and reliable. 

5.1.3 Technology Architecture for System Integration 

Seamlessly integrating the digital twin with the physical system to allow for real-time 

interaction and collaboration between them is the way of creating synergy. Results of this project 

confirm that sensing, communication, and feedback/control technologies play critical roles of 

system integration. 

When prototyping the smart assistance system in this project, we made efforts to try and 

evaluate different options of sensing, communication and feedback technologies. For the purpose 

of rapid system prototyping, we chose hardware and parts that are commercially available and 

provide development functions. Sensors we used in this project include the Myo armband – a 
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wearable device providing IMU and EMG sensor data of workers, camera – vision based sensor 

mounted on vehicles or set up in the workplace to capture video data of workers and operation 

environments, and BLE Estimote beacon – providing proximity, temperature and accelerometer 

data of any elements attached with the beacon. We found that sensor fusion (i.e., combination of 

multiple sensors or sensor data models) is the way of creating comprehensive, reliable, and 

effective sensing capability.  

We used both wire and wireless communication (Bluetooth) technology. Wireless 

communication has been justified to be a necessity for a smart assistance system due to the 

mobility requirement. Yet wire communication can be a complementary method due to the easy 

use and high reliability.  

A range of feedback devices were tested: buzzers providing audio alarms, an LED screen 

that can show a short notification, apps installed in users’ mobile devices which feed more 

details to users and have interactions with users, and websites that literally can display as much 

information as needed. The development effort on a feedback device/method is positively 

correlated with the volume of information to deliver and how smart it is in interacting with users. 

The choices of sensing, communicating, and feedback technologies are not independent. 

A technology architecture composed of sensor fusion, wireless communication, cloud 

computing, and smart mobile devices is highly recommended based on results of this project.      

5.2 Future Work 

 Completion of this project is not the end. Findings from the project and accumulated 

knowledge have built a foundation for expanding and continuing the current studies. In the 

following we summarize some future work identified as highly valuable.  
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5.2.1 Incident Classification using Descriptive Data Mining Methods 

 While the current project mainly uses descriptive analysis of incident data to identify 

scenarios of high chance HMHIs, we would recommend extending the current descriptive 

analysis of incident data to advanced descriptive data mining methods (such as clustering 

analysis and association rules) to be able to handle big incident data. We can classify incidents 

occurring in history according to incident consequences (No. fatalities, No. hospitalized injuries, 

financial damage, evacuation, and so on) and characteristics (rollover, hit, fire, and etc.) to 

identify and characterize incident clusters that require particular attention.  

5.2.2 Enhanced Road Scene Analysis with Transfer Learning  

The transportation phase with the largest number of HMHIs is “In Transit” and top 

causes of these incidents overlap with causes for other transportation incidents. Assistance to 

transportation workers when they are driving would produce great benefits. The method of road 

scene analysis presented in this project works under normal daylight driving conditions. 

However, false detections are commonly observed from experiments of driving conditions with 

low visibility such as night time or bad weather. To obtain reliable results of road scene analysis 

in various driving conditions, special sensors such as infrared cameras can be added. Moreover, 

NNs are fine-tuned with video data collected from conditions with low visibility. False detected 

images are annotated again and then used to improve the tool. We can improve the tool in an 

iterative manner until the percentage of false detection drops below the pre-defined threshold. 

5.2.3 Incident Occurrence Prediction 

Predicting the occurrence of incidents even just a couple of seconds ahead would allow 

for providing alarms or assistance to workers. Accurately triggering the assistance to workers is 

extremely important. We are motivated to further study a way of determining a more 
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informative, reliable threshold for triggering assistance. Predictive data mining methods (e.g., 

logistic regression classification, classification trees, k-nearest neighbors) can be used to create 

incident classifiers that each predicts the occurrence of any type of incident according to the 

assessment of pre-incident risk factors (e.g., road condition, road type, weather, to name a few). 
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