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Abstract 

 During the past ten years, on average there were nearly 16.5 thousands of hazardous 

materials (hazmat) transport incidents per year resulting in $82 millions of damages. Prompt, 

accurate, objective assessment on hazmat incidents is important for the first-responders to take 

appropriate actions timely, which will reduce the damage of hazmat incidents and protect the 

safety of people and the environment. Therefore, one of the most important steps is to 

automatically detect transport incidents, such as fire and traffic accidents. In this work, we 

introduce a simple and yet effective framework that integrates the convolutional feature maps of 

deep Convolutional Neural Network with a spatial attention mechanism for fire and traffic 

accident scene classification. Our spatial attention model learns to highlight the most 

discriminative convolutional features, which is related to the regions of interest in the input 

image. We train our network in a weakly supervised way. In other words, without the 

requirement of precise bounding box annotating the exact location of fire or traffic accidents in 

the image, our network can be learned from the only image-level label. In addition to the image-

based traffic scene classification, the model is also applied on a set of collected videos for real-

world applications. The proposed model, a simple end-to-end architecture, achieves promising 

performance on fire scene classification from images, and traffic accident scene classification 

from both images and videos. 
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Chapter 1 Spatial Attention Mechanism for Weakly Supervised Fire and Traffic Accident Scene 

Classification 

1.1 Introduction 

 A substantial amount of hazardous materials (hazmat), such as flammable liquids and 

poisonous gases, need to be transported to locations of consumption or disposal. During the past 

ten years, on average there were nearly 16.5 thousands of hazmat transportation incidents per 

year resulting in $82 millions of damage [1]. When a transportation incident occurs (e.g., fire, 

traffic car accident), prompt and effective emergency response is critical to minimize the impact 

of the incident. For example, fire caused by hazmat accidents contains hazardous materials and 

has a dangerous influence on the environment, human health, and other valuable properties. 

Image-based fire detection (e.g., traffic surveillance cameras) are effective in large open areas. 

However, there are challenges in designing an automatic image classification algorithm to tell if 

an image contains a fire or not. Figure 1.1 shows some samples of the fire image dataset 

collected by us, from which we can see that some non-fire images have an appearance similar to 

the fire images. In this work, we utilize the deep Convolutional Neural Network to classify 

whether an image contains a fire or not.  

In addition to fire detection in images, we also explore the general traffic accident scene 

classification in images and videos, as traffic accidents can cause serious injuries, which also 

require rapid assistance to reduce the additional rescue minute. Some samples of the traffic 

accident image dataset collected by us are shown in figure 1.2, and some samples of the traffic 

accident video dataset collected by us are shown in figure 1.3. The traffic accident images and 

videos were acquired by both traffic surveillance cameras and cameras on vehicles. 
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Figure 1.1 Sample images from our fire dataset. The appearance of “smoke” and “negative” 
samples is very similar to the “fire” samples. 

 

1.1.1 Deep Convolutional Neural Network 

 With the recent availability of powerful GPUs, effective optimization algorithms, and a 

large amount of human-annotated image data [13], Convolutional Neural Networks (CNN) 

[15,16,17,18,19,20] have achieved significant progress for the task of image classification. 

CNNs have the ability to learn meaningful feature representations from the large quantities of 

data for a wide range of tasks. In addition to image classification, CNNs pre-trained on ImageNet 

[13] contribute greatly in object detection [24,25,26], video classification [28], semantic 

segmentation [27], and many other tasks. 
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Figure 1.2 Sample images collected in our traffic accident image dataset 

 

 

Figure 1.3 Frames of sample videos collected in our traffic accident video dataset 

 

1.1.2 Spatial Attention 

 Despite recent advances, image classification using deep CNN still has challenging 

research questions to address. Most of the state-of-the-art methods [15,16,17,18,19,20] employ 

CNN over the entire image region to compute the feature maps by convolution followed by 

standard pooling (average or max) operation or a fully-connected layer for the classification, 
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without highlighting the features extracted from the most relevant spatial regions. But usually an 

object in an image does not occupy the entire spatial domain. Some of the pixels in the entire 

spatial domain are less, or not relevant to the target class. Therefore, the motivated research 

question is: “from the convolutional feature maps, which features should get more importance to 

highlight the most discriminative regions of the input image?” To address this challenge, we 

leverage the spatial attention mechanism on top of the convolutional feature maps to emphasize 

the most significant features. In other words, the spatial attention mechanism learns to focus on 

the most relevant parts of the input image. 

1.1.3 Weakly-Supervised Learning 

 Most of the modern deep learning algorithms [21,22,23] are fully supervised, which rely 

on human-labeled annotations, such as the precise bounding box and the segmentation mask for 

training. But, in practice, collecting such accurate annotations are expensive and time-

consuming. Building a training dataset with only image-level annotation is much easier than the 

bounding box or segmentation mask annotations. Therefore, the motivated research question 

arises: “given a weakly labeled image dataset (i.e., each image in the training set has a label but 

which portion of the image contains the target class is unknown), how can we effectively train a 

deep learning algorithm?” To address this challenge in this work, we use weakly-supervised 

learning that reduces the amount of human level intervention by using the image or video dataset 

that are partially labeled (e.g., “fire”, “accident”, etc.). In other words, without ever providing the 

network with information about the location of the target class, we train our network by utilizing 

only image-level labels. 
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1.2 Our Contribution 

 First, we utilize deep Convolutional Neural Networks with a spatial attention mechanism 

for fire classification. We introduce an end-to-end spatial attention model for weakly supervised 

fire classification from images using pre-trained CNN networks. Our method starts by adopting 

existing VGG [16] networks (e.g., VGG-16, VGG-19) pre-trained on ImageNet [13] data with 

only image-level supervision (no bounding box or segmentation mask annotating the precise 

region of interest in the image) for feature extraction. The extracted features from CNNs are 

passed through our spatial attention model to get the attentionally-pooled feature representation, 

which is then processed by a classification layer for the final image-level classification. In 

addition to the classification, our approach can also locate the fire regions in the image by our 

spatial attention model. 

Second, we generalize our learned spatial attention model from the fire classification 

dataset to traffic accident classification. For this purpose, we simply transfer the learned attention 

weights of our spatial attention model to traffic accident image and video datasets. 
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Chapter 2 Related Works 

2.1 Fire Detection and Classification 

 There are several works for vision-based fire detection and classification [2,3,4]. Healey 

et al. [2] used a purely color-based model for automatic fire detection. Spectral, spatial, and 

temporal models of fire regions were developed for vision-based fire detection [3]. Temporal 

wavelet features in addition to ordinary motion and color cues were utilized to detect fire and 

flame [4]. There are a limited number of machine-learning based fire classification and detection 

approaches [5,6]. Ko et al. [5] introduced a vision sensor-based fire detection method, which 

used wavelet coefficients as the input to the support vector machines (SVM) classifier with a 

radial basis function (RBF) for the fire-pixel verification. Zhang et al. [6] used temporal shape 

features as an input to the artificial neural networks (ANN) for real-time forest fire detection. 

Our approach differs from them, as we use deep convolutional features with an attention model 

for fire classification and localization. 

2.2 Traffic Accident Classification 

 There are not many literature studies on traffic accident data for classification based on 

deep learning methods. Ess et al. [7] presented a segmentation-based method to recognize traffic 

scenes in front of moving vehicles with respect to the road topology and the existence of 

commonly encountered objects. Geiger et al. [8] proposed a probabilistic generative model for 

multi-object traffic scene understanding. Gupte et al. [9] presented a computer vision-based 

algorithm for detecting and classifying vehicles in monocular image sequences of the traffic 

scene. Lan et al. [10] used the histogram of oriented gradient (HOG) and support vector machine 

(SVM) for real-time automatic obstacle detection in urban traffic. Shiau et al. [11] developed a 

forecasting model based on data mining technology for road traffic accident classification. 
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Agarwal et al. [12] presented a hybrid model based on logistic regression with a wavelet-based 

feature extraction process for traffic incident detection. 

2.3 Deep Learning for Image Classification 

 Deep Convolutional Neural Networks with the advance of architectures have become 

popular in large scale image classification. ImageNet [13] challenge played an important role to 

develop architectures from high-dimensional shallow SIFT features [14] to deep CNN [15]. 

Later a number of attempts [16,17,18,19,20] have been made to achieve better classification 

accuracy. VGGNet [16] steadily increased the depth of the network by adding more 

convolutional layers to design effective architectures. Residual connections [17] introduced the 

advantages of using additive merging of the signal with theoretical and practical evidence. The 

Inception CNN architecture was first introduced as GoogLeNet [18], which later came with 

different versions [19,20] by refining the architecture in various ways. These architectures are 

fully convolutional or fully connected and do not provide attention in the spatial domain. 

2.4 Weakly-Supervised Learning 

 There are several works [24,25,26] that used weakly-supervised learning with CNN 

features in object detection and recognition. Oquab et al. [24] employed a pre-trained CNN to 

compute the mid-level feature representation for images of PASCAL VOC. Oquab et al. [25] 

also presented the weakly supervised learning with CNNs to localize object instances in images 

while predicting the label. Bilen et al. [26] introduced weakly supervised deep detection 

networks, which used pre-trained CNN features to recognize and detect the object without the 

requirement of bounding box annotations. In our work, we leverage the attention mechanism 

with deep pre-trained CNN to emphasize the most discriminative features for weakly supervised 

fire image classification as well as traffic accident classification from images and videos. 
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Chapter 3 Approach and Methodology 

The workflow of our network is illustrated in figure 3.1. First, we obtain a pre-trained 

CNN network and extract the last convolutional feature maps by passing the image through the 

pre-trained CNN network. Second, we apply the spatial attention model on top of the last 

convolutional feature maps to get the attentionally-pooled feature vector. Third, we pass the 

attentionally-pooled feature vector through a classification module to get the final classification 

scores on the fire and the general traffic accident classification tasks. 

 

 

Figure 3.1 The architecture of our approach. (a) Feature extraction, (b) Spatial attention 
network, and (c) Classification module. 

 

3.1 Feature Extraction 

 An important component in our approach is feature extraction. In our approach, we 

choose two pre-trained networks, namely VGG-16 and VGG-19. These two pre-trained networks 

are similar, except there are more convolution and max-pooling layers in the VGG-19 network. 

We use the pre-trained 2D CNN models (VGG-16, VGG-19) trained on ImageNet dataset [13] 

with only image-level supervision to extract the last convolutional feature maps. The feature 

maps after the last convolutional layer preserve the spatial information of the input image, 

denoted as 𝑋𝑋 ∈ 𝑅𝑅𝑘𝑘1×𝑘𝑘2×𝑓𝑓denotes the spatial dimension of the feature maps and 𝑓𝑓 is the number 
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of feature map, as shown in figure 3.1(a). These feature maps are utilized to describe the visual 

content of the input image and passed to the next layers for recognition. 

3.2 Spatial Attention Mechanism 

 The feature maps 𝑋𝑋 ∈ 𝑅𝑅𝑘𝑘1×𝑘𝑘2×𝑓𝑓treat every element equally, but some pixels in the image 

are not related to the target class. Thus, we propose a spatial attention mechanism on top of X to 

gain more attention on those discriminative regions in an image. The proposed spatial attention 

mechanism is a trainable layer, which attentionally pools the most discriminative features. 

For this purpose, the feature maps 𝑋𝑋 ∈ 𝑅𝑅𝑘𝑘1×𝑘𝑘2×𝑓𝑓are converted to 2D matrix 𝑌𝑌 ∈ 𝑅𝑅𝑘𝑘×𝑓𝑓, 

where 𝑘𝑘 = (𝑘𝑘1 × 𝑘𝑘2), as shown in figure 3.1(b). Each row of matrix Y maps to different 

overlapping regions in the input space. Our spatial attention model learns to focus its attention on 

these 𝑘𝑘 regions. Formally, our spatial attention model learns an attention weight vector 𝒂𝒂 ∈ 𝑅𝑅𝑓𝑓×1 

and computes attention score vector 𝒚𝒚, which indicates the feature importance from 𝑘𝑘 regions:   

 

𝒚𝒚 = 𝑌𝑌𝒂𝒂,  where  𝒚𝒚 ∈ 𝑅𝑅𝑘𝑘×1    (3.1) 

The attention score vector 𝒚𝒚 is passed through a softmax layer to get the normalized attention 

scores- 

 

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑦𝑦(𝑖𝑖))
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦(𝑗𝑗))𝑘𝑘
𝑗𝑗=1

,    where i = 1,……,k   (3.2) 

where, 𝑦𝑦𝑖𝑖 denotes the ith dimension of 𝒚𝒚 and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [0, 1]𝑘𝑘 denotes the normalized attention 

scores.  After that, the attentionally-pooled feature vector 𝒗𝒗, which is the feature representation 

for the classification module, is computed by 

 

𝒗𝒗 = (𝑌𝑌)𝑇𝑇𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  where       𝒗𝒗 ∈ 𝑅𝑅𝑓𝑓×1   (3.3) 
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3.3 Classification Module 

 So far, the spatial attention mechanism has computed the attentionally-pooled feature 

vector 𝒗𝒗 ∈ 𝑅𝑅𝑓𝑓×1, which represents the most discriminative features of an image. Now, we aim to 

classify the image into the predefined class categories based on the attentionally-pooled feature 

vector 𝒗𝒗, as shown in figure 3.1(c). We learn linear mapping 𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶×𝑓𝑓(C is the number of 

classes) and compute the C-dimensional score vector 𝒔𝒔 from the attentionally-pooled feature 

vector: 

 

𝒔𝒔 = 𝑊𝑊𝒗𝒗,  where            𝒔𝒔 ∈ 𝑅𝑅𝐶𝐶×1   (3.4) 

Finally, the score vector 𝒔𝒔 is passed through the softmax layer to get the normalized 

classification scores: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑖𝑖) = exp (𝑠𝑠(𝑖𝑖))

∑ exp (𝑠𝑠(𝑗𝑗))𝐶𝐶
𝑗𝑗=1

,     where i = 1,………..,C   (3.5) 

where, 𝑠𝑠(𝑖𝑖) denotes the ith dimension of 𝒔𝒔 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [0, 1]𝐶𝐶 denotes the normalized 

classification scores. In other words, 𝒔𝒔 denotes the original classification scores of an image, 

which encodes the raw class activation and its response is able to reflect the degree of containing 

a specific class, while 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the softmax classification scores, which performs the 

normalization operation, turning its sum into 1. 

3.4 Attention Model for Video Recognition 

 Classifying videos instead of images adds a temporal dimension in addition to the visual 

appearance in individual frames. Therefore, in addition to the spatial attention model, we use 

Long Short-Term Memory (LSTM) [30] for video recognition, which is able to address variant-

length input and capture the long-term temporal dynamics.  
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Figure 3.2 The overall process for video recognition 

 

Since a video contains a sequence of frames, we extract the last convolutional feature 

maps obtained by pushing the video frames through the pre-trained network. Formally, given a 

video with the duration of T frames, at each time step t, we extract the last convolutional feature 

maps 𝑋𝑋𝑡𝑡 ∈ 𝑅𝑅𝑘𝑘1×𝑘𝑘2×𝑓𝑓, which are passed through the spatial attention mechanism to get the 

attentionally -pooled feature vector 𝒗𝒗𝒕𝒕 ∈ 𝑅𝑅𝑓𝑓×1. The outputs of the spatial attention mechanism 𝒗𝒗𝒕𝒕 

are passed through the recurrent sequence learning module (Long Short-Term Memory (LSTM)). 

The weight parameters of LSTM map the input 𝒗𝒗𝒕𝒕 and previous time step hidden state output to 

an output feature vector 𝒐𝒐𝒕𝒕 ∈ 𝑅𝑅𝑓𝑓×1., which is the feature representation for the classification 

module. The outputs of LSTM at each time step, are then fed into the classification module, 

which produces classification scores 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑡𝑡)  for each frame. Finally, the classification scores of 

each frame of a video are averaged to get the final video-level label prediction. The overall 

process for video recognition is shown in figure 3.2. It should be noted that we pass the outputs 
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of LSTM to the classification module for video recognition, instead of directly passing the 

outputs of the spatial attention model to the classification module for image recognition.  
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Chapter 4 Experimental Results 

4.1 Implementation Details 

 We use Keras (Tensorflow backend) python API to implement our network architecture. 

The input image is resized to 224 × 224 × 3 pixels, which is passed through the pre-trained 2D 

CNN model (VGG-16, VGG-19). We extract the last convolutional layer of the VGG-16 or 

VGG-19 network, which produces 14 × 14 × 512 feature maps. The feature maps are fed into 

our spatial attention model, which is a trainable layer. Our spatial attention model learns 

attention weights 𝒂𝒂 ∈ 𝑅𝑅𝑓𝑓×1 to get attentionally-pooled feature vector 𝒗𝒗 ∈ 𝑅𝑅𝑓𝑓×1, which is the 

feature representation for the classification module. The classification module learns a linear 

mapping 𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶×𝑓𝑓 to transform the feature representation 𝒗𝒗 into a C-dimensional score vector. 

The loss is based on the standard cross-entropy loss between the ground truth and the prediction 

from our proposed model. The weights of spatial attention network, LSTM (for video 

recognition) and classification module are learned using Adam [29] optimizer with the minibatch 

size of 32 samples, where the optimization is stopped after 15 epochs. 

4.2 Datasets 

4.2.1 Fire Dataset 

 Our fire dataset contains 68979 images from 3 classes. These 3 classes are labeled as 

“fire”, “smoke”, and “negative”. The fire class has 21013 samples, the smoke class has 20818 

samples and the negative class has 27148 samples. Evaluation is performed using the average 

classification accuracy. 

4.2.2 Traffic Accident Image Dataset 

 Our traffic accident dataset consists of 1134 images collected from Google and frames of 

YouTube videos. The images are labeled with 2 classes: “accident” and “not-accident”, which 
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have 570 and 564 samples, respectively.  Evaluation is performed using the average 

classification accuracy. 

4.2.3 Traffic Accident Video Dataset 

 Our traffic accident video dataset consists of 311 videos collected from YouTube. The 

videos are labeled with 2 classes: “accident” and “not-accident”, which have 151 and 160 

samples, respectively. Evaluation is performed using the average classification accuracy. 

4.3 Quantitative Evaluation 

4.3.1 Fire Classification 

 First, we evaluate the performance of our model on the problem of weakly-supervised 

image classification on the Fire dataset. We perform stratified random sampling on the Fire 

dataset four times and split the data 5/6 for training and 1/6 for testing for each class. Table 4.1 

shows the comparison results of our approach with other existing support vector machine (SVM) 

[5] and artificial neural network (ANN) [6] based methods for the extracted features from the 

pre-trained VGG-16 network on the Fire dataset. As shown in table 4.1, our approach (86.19% 

average accuracy) outperforms the SVM (77.41% average accuracy) and ANN (82.87% average 

accuracy) based methods by a large margin. 

 

Table 4.1 Comparison of our spatial attention model with other methods on the Fire dataset 
(accuracy) for VGG-16 features 

Trial SVM [5]  ANN [6] Spatial attention model (Ours) 
Trial-1 78.23 83.17 85.62 
Trial-2 76.51 82.17 85.58 
Trial-3 77.12 82.76 86.78 
Trial-4 77.16 83.41 86.77 

Average 77.41 82.87 86.19 
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Table 4.2 Comparison of our spatial attention model with other methods on the Fire dataset 
(accuracy) for VGG-19 features 

Trial SVM [5]  ANN [6] Spatial attention model (Ours) 
Trial-1 78.17 82.72 86.64 
Trial-2 77.35 82.09 86.32 
Trial-3 77.21 81.37 85.64 
Trial-4 77.89 82.60 86.58 

Average 77.66 82.19 86.29 
 
 

Like VGG-16, we perform the same experiments with the extracted features from pre-

trained VGG-19 network. The comparison results of our approach with other SVM and ANN 

based methods for the VGG-19 features on the Fire dataset is shown in table 4.2. As shown in 

table 4.2, our spatial attention model (86.29% average accuracy) achieves superior performance 

compared to SVM (77.66% average accuracy) and ANN (82.19% average accuracy) based 

methods.  

To test the robustness of our approach, we use VGG-16 and VGG-19 pre-trained 

networks for our experiments. As shown in table 4.1 and table 4.2, we get consistent 

performance for both VGG-16 and VGG-19 networks. As VGG-19 network has a few additional 

convolutional and max-pooling layers compared to VGG-16 network, we get slightly better 

performance on average for VGG-19 network. 

We also performed the ablation studies on our approach to see the accuracy on each 

individual class. Table 4.3 shows the performance of individual class accuracy for our spatial 

attention model with VGG-16, and VGG-19 features. As shown in table 4.3, the negative class 

classification accuracy is higher than fire and smoke classes, while most of the failure cases 

occur to classify the smoke class. Classifying the smoke class is hard, as sometimes fire itself 

creates smoke and some negative images also have the appearance similar to smoke images. 
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Table 4.3 Ablation study to see the performance of individual class accuracy for our spatial 
attention model for VGG-16 and VGG-19 features 

Class  VGG-16 features VGG-19 features 
Fire 87.64 87.65 

Smoke 76.57 82.45 
Negative 90.95 89.09 

 

 

4.3.2 Image-Based Accident Scene Classification 

 We transfer the spatial attention model that we learned from the fire dataset to the Traffic 

Accident Image dataset. Table 4.4 shows the comparison results of the transfer learning approach 

with the baseline approach for the extracted features from pre-trained VGG-19 network (here, we 

only use pre-trained VGG-19 network, as we get better performance for VGG-19 features 

compared to VGG-16 features on the fire dataset) on the Traffic Accident Image dataset. For the 

baseline approach, we configure the network without attention pipeline. For this purpose, the 

extracted feature maps 𝑋𝑋 ∈ 𝑅𝑅𝑘𝑘1×𝑘𝑘2×𝑓𝑓 are pooled and averaged to get f-dimensional feature vector 

and passed through the classification module for classification.  

 

Table 4.4 Comparison of transfer learning performance (accuracy) with baseline approach on 
Traffic Accident Image dataset for VGG-19 features 

Trial Baseline approach Spatial attention model (Ours) 
Trial-1 89.12 94.54 
Trial-2 89.72 95.63 
Trial-3 88.37 92.89 
Trial-4 88.60 91.80 

Average 88.95 93.72 
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As shown in table 4.4, our approach (93.72% average accuracy) outperforms the baseline 

approach (88.95% average accuracy) on Traffic Accident Image dataset, which means our spatial 

attention model learns generalized features that can be effectively used in traffic accident and 

hazardous materials incident classification. 

4.3.3 Video-Based Accident Scene Classification 

 We evaluate the performance of our video recognition framework (spatial attention 

model + LSTM) on Traffic Accident Video dataset for real-time traffic accident scene 

classification. As shown in table 4.5, we performed the ablation studies on our framework by 

comparing three configurations on Traffic Accident Video dataset. Over all three configurations, 

the combination of spatial attention model and LSTM achieves the best performance.  

 

Table 4.5 Ablation study of different architectures on Traffic Accident Video dataset for VGG-
19 features 

Trial Baseline approach Spatial attention 
model (Ours) 

Spatial attention model + LSTM 
(Ours) 

Trial-1 78.84 81.39 82.69 
Trial-2 79.16 84.67 86.53 
Trial-3 77.44 80.10 82.69 
Trial-4 77.81 81.18 84.61 

Average 78.31 81.84 84.13 
 
 

The first configuration in the second column of table 4.5 shows the results of the baseline 

approach without any attention pipeline, which achieves 78.31% average accuracy. The third 

column in table 4.5 shows the performance of spatial attention model, which achieves better 

performance (81.84% average accuracy) compared to the baseline approach. The last 

configuration, which combines the spatial attention model and LSTM, achieves the best 
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performance (84.13% average accuracy), which indicates that our spatial attention model with 

LSTM can be effectively used in real-world applications of traffic accident scene classification.   

4.4 Qualitative Evaluation 

 We visualize our spatial attention maps on some randomly selected test samples of fire 

and traffic accident datasets. As shown in figure 4.1, our spatial attention model can correctly 

focus on the fire and accident regions in the image, without the requirement of the bounding box 

and segmentation mask annotations. 

 

 

Figure 4.1 Visualization of our spatial attention map. Our spatial attention model learns to locate 
the fire and accident regions in the image. 
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Chapter 5 Conclusions 

In this work, we introduce a new weakly-supervised framework for fire classification 

from images, and accident scene classification from both images and videos. We use pre-trained 

deep CNN features and employ a spatial attention mechanism to address the challenge of 

highlighting the most discriminative features for fire classification. To see the effectiveness of 

our approach, we also transfer the learned weights of our spatial attention model to a generalized 

traffic accident dataset for classification. We performed extensive experimental evaluation and 

showed that our model performs better than the baseline approach, which did not use any 

attention pipeline. The proposed framework is also efficient and easy to implement. 
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