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Abstract 

In this research, deep learning models for the prediction of river gauge heights were 

developed using publicly available data for the unmonitored locations in Missouri. The 

geospatial and rainfall data for 20 different catchment areas in Missouri was used in tandem with 

the clustering and ensemble deep learning approaches to develop a high-performance deep 

learning model that efficiently captured the interdependencies between the time-series input data 

values. The models accurately predicted river water level values up to four hours ahead with a 

correlation of greater than 0.82 with most results having a correlation greater than 0.9. Using a 

data-based approach to develop a deep learning neural networks-based framework can assist the 

first responders in issuing timely and localized flood warnings for the safety of the general 

public. This methodology was applied to publicly available datasets obtained from the United 

States Geological Survey (USGS) and the National Weather Service (NWS). The research 

project was funded by the Missouri Department of Transportation (MoDOT) and Mid-America 

Transportation Center (MATC). 
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Executive Summary 

This research project used geospatial, river water level, and rainfall feature datasets as 

inputs to an ensemble of deep learning neural network models to predict river water levels at 

unmonitored sites. Multiple gauges from 20 different catchment locations were grouped into four 

clusters to train an ensemble of Long Short Term Memory (LSTM) deep learning models. These 

four clusters represented the distance of the unmonitored site from existing gauges, labeled 

‘Close-Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) respectively. 

Geospatial data and sequential time series data values representing rainfall and existing river 

gauge data were used as inputs to the models to make multistep predictions at unmonitored 

locations as shown in Figure E.1. 

 

 

 

Figure E.1 Modeling Approach Overview 

 

The use of ensemble learning methods to train multiple deep learning models increased 

the forecasting performance of the models as compared to a single deep learning model. Also, 

the application of the cluster-based deep learning ensemble model training methodology 

showcased a high correlation between the predicted model values and the true gauge height 
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values. The correlation coefficient values for the unmonitored sites in the four clusters are 

0.9948, 0.9441, 0.9208, 0.8351 for ‘CC’, ‘CF’, ‘FC’, and ‘FF’ respectively. These accuracies are 

similar to current gauge height measurements, with sufficient detail to inform decision-makers of 

potentially hazardous flooding conditions. Unlike other modeling approaches, the models 

proposed in this study predicted correlation while making predictions at future timesteps. The 

deep learning-based model framework developed in this project is a novel methodology that did 

not exist before this project and provides significant assistance to the first responders in 

preparing for flooding events at an unmonitored site. 
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Chapter 1 Literature Review 

Flooding events cause economic and personal damages to people living in the flood-

prone areas of Missouri. Multiple studies have been conducted to calculate the penetration of 

floodwaters in proximity to gauged locations using mathematical and machine learning-based 

models. However, there is a lack of methodology in the literature that addresses the issue of 

calculating similar water levels at unmonitored locations. Various research studies in the fields of 

river gauge level monitoring, flood predictions, and neural networks-based prediction models 

were reviewed to develop a methodology to predict flash flood activity at unmonitored locations. 

1.1 Flood Susceptibility Mapping and Machine Learning 

Various modeling techniques have been applied by researchers to develop flood 

susceptibility maps using computational intelligence tools such as neural networks, genetic 

algorithms (GA), etc. The flow of the river Nile was forecasted by using an artificial neural 

network (ANN) based flood prediction model in flood-sensitive areas of Sudan (Elsafi, 2014). A 

hybrid autoencoder-multilayer perceptron model was developed for flood susceptibility mapping 

of the flood-prone areas in Iran and India (Ahmadlou et al., 2020). This hybrid model relied on 

multiple variables to deliver better results than a traditional multiple layer perceptron (MLP)-

based model. A Long Short Term Memory (LSTM)-based neural network model was trained to 

calculate the river water levels in the Russian River Basin, California, USA (Han et al., 2021). 

The outputs of this hourly runoff LSTM forecasting model can be used to make short-term flood 

predictions for the selected area. Flood susceptibility maps were also developed using the 

convolutional neural networks (CNN) and recurrent neural networks (RNN) on historical flood 

information and various geospatial features (Panahi et al., 2021). Genetic Algorithm (GA) based 

optimization techniques have been adopted to optimize deep belief networks (DBN) and develop 
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novel methodology to predict flash flood susceptibility in the flash flood-prone regions of Iran 

(Shahabi et al., 2021). One-dimensional (1D) and two-dimensional (2D) hydrologic flow 

computations have been conducted to calculate flood travel time and inundated areas in the 

flood-prone regions of Ohio, USA (Ghimire et al., 2020). Researchers have also used diverse sets 

of variables such as groundwater levels, depth, average wind speed, tides, etc., to apply neural 

networks-based regression models to predict flooding events in Mohawk River, New York 

(Tsakiri et al., 2018). The results from a Geographic Information Systems (GIS) simulator were 

analyzed to develop an efficient rainfall-runoff model and predict the rise in flood water levels 

more accurately (Chiari et al., 2000). Hydrologic simulation software such as the River Analysis 

System (HEC-RAS) is often implemented by authorities in charge of implementing flood 

disaster mitigation plans to develop flood inundation maps of the risk-prone regions of the 

United States (US Army Corps of Engineers, 2021).  

1.2 Ungauged Basins 

Even though there is a lack of research efforts in the field of flood forecasting for the 

areas without any river gauge installations, a few researchers have developed methodologies to 

address this issue. A regional flood frequency analysis study was conducted using the method of 

L-moments and index flood to predict flood quantiles for a mid-Norway region with 26 

unregulated catchments (Hailegeorgis & Alfredsen, 2017). Machine learning techniques such as 

k-fold validation were used to train the Long Short Term Memory (LSTM) networks instead of 

relying on the Sacramento Soil Moisture Accounting (SAC-SMA) model to accurately capture 

catchment-level rainfall-runoff behaviors (Kratzert et al., 2019). Hydrologic similarities between 

basins were studied to estimate streamflow values and develop a rainfall-runoff model for the 

ungauged Karkheh River Basin, Iran (Choubin et al, 2019). Geospatial features such as 
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Hydrological Response Unit (HRU) images were analyzed in QGIS software to study similarities 

between 33 catchments in the Western Black Sea Region of Turkey (Aytaç, 2020). Classification 

techniques such as fuzzy c-means and k-Nearest Neighbour were relied on to develop machine 

learning models to classify drainage basins and predict streamflow values in ungauged basins 

(Papageorgaki & Nalbantis, 2016).  

Most of the flash flood susceptibility mapping and warning systems methods presented in 

the literature were developed for areas that have river water level prediction infrastructure 

installed at appropriate sites. However, it is equally important to predict flash flood events for 

unmonitored locations in order to develop robust warning systems for the benefit of the residents 

of these areas. With the availability of huge volumes of geospatial and precipitation datasets, the 

predictive capabilities of deep learning neural network models can be harnessed to make high-

quality river water level predictions for such locations. In this study, an ensemble of multiple 

deep learning models was implemented to capture relationships between different variables such 

as gauge height, rainfall, etc., and develop virtual gauges for unmonitored locations in the flash 

flood-prone catchments of Missouri. The authorities responsible for flood prediction and 

management tasks can rely on the output of these virtual gauges to take necessary precautions for 

the safety of the general public. 
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Chapter 2 Methodology 

The objective of this research project was to develop virtual monitors for unmonitored 

locations in flood-prone catchment areas of Missouri. Figure 2.1 illustrates the methodology used 

to collect data and develop deep learning-based models to predict water levels at locations 

without any water level monitoring infrastructure. The first step of the methodology involved 

developing the catchment database using ArcGIS Pro and datasets from the United States 

Geological Survey (USGS). In the second step, the flowline distances between different sets of 

gauges were calculated to identify different groups of gauges needed to develop deep learning-

based prediction models. The water level or stage values for gauges in these groupings were 

obtained from the USGS’s data archive. Also, the daily rainfall observation values for the 

catchments were gathered from the National Weather Service (NWS) archive. Finally, the gauge 

and rainfall values were used as inputs to the deep learning models that can assist in the task of 

predicting water levels at unmonitored locations. 

 

 

Figure 2.1 Model Framework 

 

2.1 Develop Catchment Database 

The geospatial data files which contain topographic maps and geographic information 

system (GIS) datasets for different parts of Missouri were downloaded from the USGS’s 

National Map data repository (The National Map, 2022). The one-meter Digital Elevation Model 

(DEM) files for Missouri were downloaded using National Map’s data download application 
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(USGS National Map, 2022). Even though the one-meter DEM coverage is limited in some areas 

of the state as shown in Figure 2.2, these high-quality data files obtained from the light detection 

and ranging (Lidar) source are suitable for capturing the geospatial features of a location 

efficiently.  

 

 

Figure 2.2 One-meter DEM Coverage for Missouri 

 

The goal of the study was to capture the behavior of the gauges in the state’s catchment 

areas to develop deep learning-based virtual gauges to monitor water levels at unmonitored 

locations. Once developed, these virtual gauges can provide more accurate local flood 

predictions for the area. The gauge information from the USGS National Water Dashboard’s 

database was also used to identify 50 different catchments in the state where gauges have been 

installed by the authorities to monitor river and stream water levels (USGS, 2022). Then, the 

DEM files for these 50 different gauged catchment areas were uploaded to the geospatial 
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information system (GIS) software ArcGIS Pro for visualization. These files were further 

processed using the software’s inbuilt functions to extract values of various geospatial features 

such as elevation, slope, area, perimeter, etc. for the catchments. The purple polygons in Figure 

2.3 highlight the locations of such gauged catchments in Missouri. 

 

 

Figure 2.3 Gauged Catchments in Missouri 

 

2.2 Calculate Flowline Distances 

The gauges used in this study were divided into three different groups: upstream gauges, 

gauges of interest, and downstream gauges. The gauge of interest is located between the 

upstream and downstream gauges as shown in Figure 2.4. The development of a virtual monitor 

for this gauge of interest will provide a focused flood warning for a specified region without 
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spending any resources to install and maintain an actual gauge at this location. The distance 

value between the gauges interacts differently with the other model inputs, so it is necessary to 

determine the stream distances between the gauges.  

 

 

Figure 2.4 Gauge Grouping 

 

Flowlines were drawn in ArcGIS Pro to calculate the polyline distance between an 

upstream gauge and a downstream gauge in a gauged catchment. Figure 2.5 shows a flowline 

drawn between two actively monitored gauges on Osage River near Bagnell, MO. Similar lines 

were drawn between all monitored gauges located in the catchments to extract respective 

polyline distances between them. 
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Figure 2.5 Measuring Polyline Distance between Two Monitored Gauges 

 

The number of catchments needed for the predictive analytics tasks was reduced from 50 

to 21 in this study due to the lack of availability of gauge height and rainfall data for the 

remaining 29 catchments. A total of 42 different flowlines were drawn between the upstream, 

gauge of interest, and downstream gauges, which constitute 21 complete chains of gauges in the 

catchment database that originally comprised 50 gauged catchments. Later, information for one 

gauge of interest had to be removed from the database due to the limited availability of the gauge 

readings for its upstream gauge located on St. Francis River.  It is also worth noting that some 

gauges are located outside the state of Missouri as shown in Figure 2.6.  
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Figure 2.6 River Flowlines Between Monitored Gauges 

 

The geodesic distances between these gauges were compiled in a tabular format using 

ArcGIS Pro and are presented in Figure 2.7. These upstream and downstream distances were 

measured in kilometers and were calculated using ArcGIS Pro’s ‘Calculate Geometry’ tool. The 

geodesic distance represents a more accurate distance between two points on the earth’s curved 

surface as the elevation difference between them is reflected in the calculations (ESRI, 2022). 

This proximity information enabled the development of specialized deep learning-based 

prediction models, trained to make predictions at differing distances from sponsoring input 

gauges. 
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Figure 2.7 Flowline Geodesic Distances 

 

2.3 Download Gauge and Rainfall Data 

The river gauge readings for the upstream and downstream gauges were procured from 

the USGS National Water Information System after conducting the relational mapping operation 

between these waterway gauges by calculating the geodesic distances between them (USGS 

National Water Information System, 2022). The historic readings for both the upstream and 

downstream gauges were downloaded for a date range lying between September 1, 2016 and 

December 30, 2021. These data values were then resampled at 30-minute intervals using Python 

scripts to use them as inputs to the deep learning-based models. The historic readings for the 

unmonitored gauges of interest were not used as inputs to these models as this information would 
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not be available to the user in the eventual scenario where a deep learning model is relied on to 

predict gauge heights at such a location. 

The National Weather Service (NWS) Archive maintains daily rainfall data values for the 

contiguous United States. The rainfall data from September 1, 2016 - December 30, 2021 was 

obtained from the National Weather Service (NWS) archive for the catchments. The daily 

rainfall data from September 1, 2016 - June 27, 2017 was available in the point format (NWS, 

2022). The rainfall data was also available in the raster format from June 28, 2017 - December 

30, 2021 (NWS, 2022). The daily rainfall observation values were procured using the ‘Clip’ tool 

in ArcGIS Pro and were divided by 48 to obtain values at a time interval of 30 minutes. The 

complete dataset containing time series-based upstream and downstream gauge values and 

rainfall values was used as an input to the deep learning neural networks.  

2.4 Implement Deep Learning Models 

In order to predict the gauge readings at the central gauge of interest, the readings from 

the upstream and downstream gauges were used as inputs to an ensemble of multiple Long Short 

Term Memory (LSTM) neural network-based models. Apart from using these two model input 

features, the average localized rainfall values within the catchment were also used to make such 

predictions. The predicted gauge height values were then compared with the true time series 

labels at the gauge of interest to evaluate the performance of the deep learning models. 

Eventually, the learning outcome of these prediction models can be applied to when predicting 

gauge height values at unmonitored locations. The dataset contained a total of 118,021 

observations for all three features: upstream gauge height, downstream gauge height, and 

catchment rainfall. These time series-based data observations represented feature values at a time 

interval of thirty minutes. Different data processing techniques such as data cleaning, exploratory 
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data analysis, data normalization, etc., were conducted on this multivariate dataset to prepare a 

suitable format for an ensemble of multiple LSTM-based deep learning neural networks. Figure 

2.8 shows the framework of the LSTM-based deep learning neural networks implemented on the 

multivariate time series dataset to predict the gauge heights at the gauge of interest. 

 

 

Figure 2.8 LSTM Deep Learning Neural Networks Framework for Gauge Height Predictions 

 

The entire dataset was divided into two sets of training and testing datasets for analysis. 

80% of the whole dataset constituted the training dataset and the remaining 20% of it was used 

as a testing dataset to evaluate the model performance. Also, 15% of the training dataset was 

allotted to a validation dataset to tune the parameters of the deep learning models and improve 

their prediction accuracy. 

2.5 Gauge Grouping Clusters 

Figure 2.9 details how each of the 20-gauge groupings in Figure 2.6 were partitioned into 

four different grouping clusters. These clusters were delineated by the distance between 

individual gauges within each gauge grouping. Specifically, for each gauge grouping, two 

distance values were determined: the distance between the gauge of interest and the upstream 

gauge and between the gauge of interest and the downstream gauge. The median exhibited value 
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for each of these distances was then determined with respect to all 20-gauge groupings. For each 

gauge grouping, their respective distance values were compared to these median values to assign 

a fuzzy tag describing the general proximity of the individual gauges in the grouping. For 

instance, a gauge grouping that maintained a distance less than the 20-grouping median between 

the gauge of interest and the upstream gauge was assigned a ‘Close’ tag as the relationship. If the 

same grouping’s distance between the gauge of interest and the downstream gauge was greater 

than the 20-group median, a ‘Far’ tag would be assigned as the relationship. A labeling 

mechanism describes these tags in the leftmost graph of Figure 2.9: ‘Close-Close’ (CC), ‘Close-

Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF). Therein, the first tag describes the gauge of 

interest-to-upstream gauge distance with the second tag describing the gauge of interest-to-

downstream gauge distance. Data from gauge groupings within each cluster was then used to 

train respective models to predict the behavior of virtual gauges that would fall into the same 

cluster. 

 

 

Figure 2.9 Gauge Groupings and Four Clusters 
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This clustering was completed to ease the prediction burden that would be incurred if a 

single model was used to make accurate predictions regardless of the proximity of the gauges 

used to provide input feature data. In this way, four specialized models were created to predict 

virtual gauge heights for ‘CC’, ‘CF’, ‘FC’, and ‘FF’ scenarios, respectively. 

For each of the four grouping clusters with five-gauge groupings each, four-gauge 

groupings were used in an aggregate fashion to train an ensemble model dedicated to predictions 

on the grouping cluster. A final gauge grouping was kept out of training to test the generalization 

of the trained model for its ability to process new data as shown in Figure 2.10. The four novel 

gauge groupings were reserved to evaluate their respective grouping clusters. This approach 

simulated the application of a trained cluster ensemble to a scenario where the virtual gauge was 

desired while enabling the comparison of the model’s output to known true gauge-of-interest 

values. 

 

 

Figure 2.10 Gauge Groupings and Deep Learning Models 
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2.6 Long Short Term Memory (LSTM) Deep Neural Networks 

A deep learning neural network is a mathematical model which consists of multiple 

layers with mathematical functions called neurons that process the input data values and pass the 

corresponding output information to the next layer in the network. The three different types of 

layers in a deep learning neural network are an input layer, hidden layers, and an output layer. 

The neurons in the input layer receive the input dataset and transfer the necessary information to 

the interconnected hidden layers. This information is processed within the hidden layers and its 

output is sent to the output layer of the network. Later, the final output layer generates an 

appropriate model output value for a regression task such as predicting water levels at a gauge of 

interest.  

An LSTM-based deep learning neural network was developed to predict the gauge height 

values for the gauges of interest from each cluster. Long Short Term Memory (LSTM) networks 

are a category of recurrent neural networks that are suitable to make predictions for an input time 

series-based feature dataset. These neural networks capture the interdependencies present 

between the different time steps of a huge input dataset to generate accurate prediction results. 

These interdependencies are preserved in its network through a set of gating mechanisms that aid 

in the efficient retention and movement of critical information between different steps of a 

sequential time series dataset (laddad, 2019). The LSTM-based deep learning neural networks 

implemented in the research project used input feature values from the previous 30 timesteps (15 

hours) to predict gauge height level readings which are 8 timesteps (4 hours) ahead in the future.  

The architecture of the LSTM implemented in this study consisted of eight different layers 

arranged sequentially. The time series dataset with values for different features such as upstream 

gauge height, downstream gauge height, and average catchment rainfall was used as input to the 
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initial 50-unit layer of the LSTM network as shown in Figure 2.11. These units represented the 

dimension of outputs and the number of parameters in the LSTM layer (Tung, 2022). A dropout 

regularization layer was added next to help avoid overfitting (Ampadu, 2021). An overfitted 

model will perform poorly on the test dataset producing high test error values and inaccurate 

prediction results (IBM, 2021). A dropout value of 0.2 was used to randomly drop 20% of a 

layer’s output neurons to prevent overfitting while training the model with the input data values. 

This pair of a 50-unit LSTM layer and 0.2 or 20% dropout layer was repeated twice in the 

architecture of the LSTM deep neural network. The penultimate layer with 50 units passed its 

outputs to the final one-unit ‘Dense’ layer. This ‘Dense’ layer was used to extract a single-value 

prediction from the model for the gauge height of the gauge of interest four hours ahead. Whilst 

training, this prediction value was compared to the true four-hour-ahead value from the physical 

gauge of interest to determine error and backpropagation proceedings. When applied to novel 

scenarios, the output of the model can be regarded as a prediction for a virtual gauge between the 

upstream and downstream gauges whose time-series data was passed as the input to the deep 

learning model. 
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Figure 2.11 LSTM Deep Learning Neural Network Architecture 

 

An ensemble learning approach was implemented on the input feature dataset to train 

multiple LSTM-based deep learning models for all gauges in each cluster category. The 

prediction values from these multiple models were combined to reduce the variance of the 

predictions and generate better prediction results as compared to a single deep learning model 

(Brownlee, 2019). For each cluster, 30 identical instances of the LSTM model were trained and 

combined into an ensemble to make both an average prediction and a prediction interval about 

this average. This ensemble method was also used to mitigate the impact that initialized weights 

may have on the final prediction of a single model. Training an ensemble of models on the same 

data while providing different weight initializations reduced the overall bias these initial weights 

may have had on a final solution. Further, the variance between the predictions made by 

individual models within the ensemble describe a band about the ensemble’s average prediction 

where the true value is expected to lie. 
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Chapter 3 Results and Discussion 

An ensemble of LSTM-based deep learning neural networks is trained on the time series 

dataset containing gauge height and catchment rainfall values to predict gauge height readings at 

virtual gauges located in flood-prone regions. The model outputs obtained after analyzing the 

aggregate input feature dataset are compared against the true gauge of interest values to evaluate 

the capabilities of the prediction models. The deep learning-based models assist in efficiently 

capturing the relationships between the input data feature points. Also, the application of the 

ensemble learning approach to train such models to make high-quality predictions with low 

generalization errors. The predicted values are compared against the true gauge readings for all 

the ‘Close-Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) gauge groupings 

to evaluate the generalization capabilities of respective gauge grouping ensembles. 

Figure 3.1 details the relationship between model predictions and true gauge height 

values for the novel ‘Close-Close’ (CC) gauge grouping used to test the generalization of the 

trained ‘Close-Close’ (CC) ensemble. The predicted values accurately trace the true values, 

capturing the intricacies and progressions of the gauge of interest’s rise and fall in water levels. 

Additionally, a 95% prediction interval about the ‘Close-Close’ (CC) ensemble’s mean predicted 

value is shown in Figure 3.1 as light blue. These prediction interval bounds are specified by the 

values that lie at a distance of ‘1.96σ’ above and below the mean prediction values obtained after 

training an ensemble of LSTM deep learning models. Ideally, the predicted values should lie 

between the prediction interval to highlight more accurate forecast results from a prediction 

model. Here, ‘σ’ represents the standard deviation of the predictions calculated by the 30 LSTM-

based deep learning models comprising the ‘Close-Close’ (CC) ensemble. Also, these prediction-
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interval bounds fluctuate in scenarios where the ensemble models show less variability and 

display a wider range and more nonconformity between the model predictions exists. 

 

 

Figure 3.1 Comparison of Predicted and True Gauge Height Values for ‘Close-Close’ (CC) 
Gauge Grouping 

 

Summary statistics results for the ‘Close-Close’ (CC) ensemble’s prediction performance 

metrics are shown in Figure 3.2. These metrics are obtained from the application of the trained 

‘Close-Close’ (CC) ensemble to a novel gauge grouping scenario that fits the ‘Close-Close’ (CC) 

cluster classification. The mean and median absolute deviation values between the true and 

predicted values are 8.683 and 5.119 inches, respectively which means that the spectrum of the 

gauge grouping’s gauge of interest is 556.44 inches. Alternatively, it means that the difference 

between the maximum and minimum gauge height values exhibited by the gauge of interest is 

556.44 inches. This spectrum also implies that the mean and median absolute deviation relate to 
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a 1.56% and 0.92% deviation from the true value when compared to the exhibited spectrum. The 

width of the generated 95% prediction interval is quite wide at 55.579 inches, on average. This 

width does not detract from the predictive capability of this ensemble as the average model 

prediction exhibits a 0.9948 correlation coefficient to the true gauge of interest gauge height. As 

the gauge of interest displays a 0.8784 correlation coefficient, on average, to upstream and 

downstream gauge heights, an increase of 0.1155 is attributable to the ensemble model. This 

relates to a 13.133% increase in the correlation coefficient performance beyond the information 

available from upstream and downstream gauges directly. 

 

 

Figure 3.2 ‘Close-Close’ (CC) Ensemble Summary Statistics 

 

The relationship between the predicted and true gauge height values for the ‘Close-Far’ 

(CF) gauge grouping is shown in Figure 3.3. The predicted values trace the true values to some 

extent and still manage to capture the gauge of interest’s behavior and its underlying patterns. A 
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95% prediction interval about the ‘Close-Far’ (CF) ensemble’s mean predicted value is shown in 

light blue. While the prediction intervals generated by the ‘Close-Far’ (CF) ensemble also 

fluctuate to match individual model variation, this implementation of the ‘Close-Far’ (CF) 

ensemble does not exhibit as much variability as was demonstrated in the ‘Close-Close’ (CC) 

ensemble. Even though there is generally some deviation between the ensemble predicted values 

and their true-valued counterparts, the characteristic mirroring between the two sequences is still 

useful.  

 

 

Figure 3.3 Comparison of Predicted and True Gauge Height Values for ‘Close-Far’ (CF) Gauge 
Grouping 

 

The mean and median absolute deviation between the true and predicted values for the 

‘Close-Far’ (CF) ensemble are 4.624 and 3.679 inches, respectively as shown in Figure 3.4. 

Here, the spectrum of the gauge grouping’s gauge of interest is 309.36 inches. This spectrum 
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implies that the mean and median absolute deviation relate to a 1.49% and 1.19% deviation from 

the true value when compared to the exhibited spectrum. This also means that a direct 

comparison of the absolute deviation values in inches is not a fair comparison. The ‘Close-Far’ 

(CF) ensemble’s prediction performance is much lower in terms of explicit deviation but the 

percentage of the gauge-of-interest’s spectrum these deviations comprise is relatively similar. 

The width of the 95% prediction interval is narrow at 6.704 inches or 2.17% of the gauge of 

interest’s spectrum on average. The correlation coefficient value between the ensemble’s 

predictions and actual values of the gauge is 0.9441 which is an improvement of 7.694% beyond 

the information discernable from the upstream and downstream gauges directly. 

 

 

Figure 3.4 ‘Close-Far’ (CF) Ensemble Summary Statistics 

 

Figure 3.5 shows the relationship between model predictions and true gauge height 

values for the novel ‘Far-Close’ (FC) gauge grouping used to test the generalization of the 
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trained ‘Far-Close’ (FC) ensemble. The predicted values trace the true values to some extent and 

still succeed in capturing the gauge-of-interest’s behavior and patterns, enabling utility from this 

ensemble of models. A 95% prediction interval about the ‘Far-Close’ (FC) ensemble’s mean 

predicted value is displayed in light blue.  

 

 

Figure 3.5 Comparison of Predicted and True Gauge Height Values for ‘Far-Close’ (FC) Gauge 
Grouping 

 

The summary statistics of performance metrics for the ‘Far-Close’ (FC) ensemble shown 

in Figure 3.6 are derived from the application of the trained ‘Far-Close’ (FC) ensemble to a 

novel gauge grouping scenario that fits the ‘Far-Close’ (FC) cluster classification. The mean and 

median absolute deviation parameter values between the true and predicted gauge height values 

are shown to be 2.278 and 1.766 inches, respectively. The spectrum of the gauge grouping’s 

gauge-of-interest equals 130.92 inches. This spectrum implies a mean and median absolute 
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deviation of 1.74% and 1.35%, respectively, of the true gauge height value to the spectrum. The 

width of the 95% prediction interval is 3.804 inches or 2.91% of the gauge-of-interest’s 

spectrum, on average. The ensemble’s predictions demonstrate a 0.9208 correlation coefficient to 

the actual values of the gauge which results in an improvement of 3.605% beyond the 

information discernable from the upstream and downstream gauges directly. 

 

 

Figure 3.6 ‘Far-Close’ (FC) Ensemble Summary Statistics 

 

In the case of the ‘Far-Far’ (FF) gauge grouping, the predicted values trace the true 

values to some extent and accurately capture the gauge-of-interest’s behavior and patterns as 

shown in Figure 3.7. A 95% prediction interval about the ‘Far-Far’ (FF) ensemble’s mean 

predicted value is shown in light blue. With some exceptions, the ‘Far-Far’ (FF) ensemble 

predictions closely trace the true gauge height values, suggesting an ability to competently 

generalize to a novel ‘Far-Far’ (FF) gauge grouping scenario. 
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Figure 3.7 Comparison of Predicted and True Gauge Height Values for ‘Far-Far’ (FF) Gauge 
Grouping 

 

The mean and median absolute deviation readings between the true and predicted values 

are shown to be 3.944 and 2.738 inches, respectively for the ‘Far-Far’ (FF) ensemble as 

illustrated in Figure 3.8. The value of the spectrum of the gauge grouping’s gauge-of-interest is 

260.88 inches, which implies that the mean and median absolute deviation represent a 1.51% and 

1.05% deviation from the true value when compared to the spectrum exhibited. The width of the 

95% prediction interval generated is 6.337 inches or 2.43% of the gauge of interest’s spectrum, 

on average. The ensemble’s predictions have a 0.8351 correlation coefficient to the actual values 

of the gauge which showcases an improvement of 8.661% beyond the information discernable 

from the upstream and downstream gauges directly. 
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Figure 3.8 ‘Far-Far’ (FF) Ensemble Summary Statistics 

 

The ensemble of LSTM-based deep learning models is trained for different sets of 

‘Close-Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) clusters 

characterized by the flowline distances between individual gauges within each gauge grouping. 

These ensemble models make high-quality predictions for the novel gauges-of-interest within the 

respective four cluster scenarios with a mean absolute deviation of 4.882 inches across the four 

examined instances. There is a 1.577% deviation in relation to the average spectrum across the 

four novel gauges-of-interest. Relatedly, the median absolute deviation across the four novel 

gauge groupings is 3.326 inches which is 1.127% of the average four-gauge spectrum. The mean 

absolute deviation for all four novel gauge groupings is greater than the median absolute 

deviation which represents a right-skewed distribution of the absolute deviation values. This 

indicates there are some instances of larger absolute deviations that draw the mean to the right of 

the median.  
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The deep learning ensemble model’s correlation coefficient value between its predicted 

values and the true gauge values is greater than the correlation coefficient value between the 

upstream, downstream gauges, and the true gauge values. The model demonstrates an 

improvement in the prediction of gauge-of-interest information beyond what is available by 

considering the upstream and downstream gauges. Also, the average correlation coefficient 

between all gauges considered in the modeling efforts is 0.677, which shows that this approach 

provides predictive information beyond what is available through simple correlation modeling. 

Moreover, these correlation coefficients are calculated in-time, so that the noted correlation 

coefficients achieved by examining other gauges could be achieved for the current 

timestep(t=now). The ensemble models developed in this study achieve the superior correlation 

coefficient values while efficiently predicting the gauge height values eight timesteps, or four 

hours, into the future (t=now+4 hours). Here, the value of each timestep is 30 minutes. The 

models provide advanced knowledge of changes in the gauge height values at the gauge-of-

interest that grants a head start to emergency planning and mitigation officials to notify the 

public of impending flooding scenarios. The accurate multi-step gauge height predictions 

provide sufficient time for the authorities to issue warnings for the safety of the general public. 

Also, the learning outcomes of the LSTM-based deep learning neural networks can be 

implemented using an unseen feature dataset to make gauge height predictions for novel gauge 

groupings. The models developed for each cluster can be used to make predictions about a 

scenario that would fit into a cluster lacking a gauge-of-interest. The models associated with 

each cluster can be used appropriately to create virtual gauges between an upstream and 

downstream gauge pair that can be used to make gauge height predictions without installing and 

maintaining a physical gauge at unmonitored locations. In this case, the authorities do not have 
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to allocate resources to install gauges at such locations and can rely on deep learning models to 

make water level predictions. 
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Chapter 4 Conclusions 

A computational intelligence-based methodology was implemented to develop virtual 

gauges and predict river water levels for unmonitored catchment locations in Missouri. A set of 

20 different gauges were selected and divided into different clusters based on the distances 

between the gauges in each cluster. The gauge groupings from the clusters were then used in an 

aggregated manner to implement an ensemble of Long Short Term Memory (LSTM)-based deep 

learning neural networks. The deep learning neural networks were applied on a high-quality 

feature data set to make model predictions that were used to develop virtual gauges and predict 

river water levels at unmonitored sites. The multivariate feature dataset needed to develop the 

model framework was gathered from the data archives of reliable government agencies such as 

the United States Geological Survey (USGS) and the National Weather Service (NWS).  

The implementation of an ensemble learning approach in this research project assisted in 

the task of efficiently processing and analyzing the huge volumes of data points to make accurate 

predictions. The LSTM’s parameters were also tuned accordingly to capture the intricate 

relationships between distinct data variables and develop a generalized neural network that 

generates highly accurate model outputs. These outputs were generated four hours into the 

future. This gives first responders the ability to use the model outputs where real-time water level 

information is needed to take advance actions for the safety of the public. Also, the authorities 

can focus on making critical flash flood precaution-related decisions without being concerned 

about the allocation of resources such as time and money to install actual gauges to predict future 

water levels at a given site. 

A few limitations about the research presented are worth mentioning. The models 

developed can only be employed in scenarios where upstream and downstream gauge data are 
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available in a timely manner, along with rainfall data within the same rainfall catchment that the 

virtual gauge is planned for. If modified models are created that require different subsets of these 

input features, the models may be applied to a larger number of locations and scenarios. For 

instance, if a model is trained to make predictions while requiring only a downstream gauge and 

rainfall data, it may be more broadly applicable. This broadened range of application may be of 

considerable utility, even if the general accuracy is reduced given the leaner inputs to the model. 

These relatively restrictive input feature requirements also limit the number of gauge 

groupings that would be used to train the developed models. While this research included only 

20-gauge groupings in their training and validation efforts, a less demanding input feature 

prerequisite would have allowed for the inclusion of many more gauge groupings in the training 

set. Increasing the number of gauge groupings used in training these predictive models may be 

beneficial as it could expose the models to scenarios and intricacies that are not captured by the 

current training set. While this research focused on supplying training data comprising all three 

of these critical hydrologic features, other, less demanding models may receive a boost from a 

broadened training set. 

Additionally, the models developed in this research utilized average daily rainfall data 

from the gauge of interest catchments in crafting the rainfall input feature. To do so, the daily 

values were resampled into 30-minute increments, essentially describing a steady rainfall 

throughout the day amounting to the average observed daily total for the catchment. While this 

provides some information about the rainfall experienced within a catchment, this procedure 

introduces a lot of noise and may lead to less accurate prediction results than expected from a 

more granular rainfall reading. While this effect on accuracy has not been verified, it stands to 
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reason that the absence of correspondingly granular rainfall readings may impact the 

performance achieved by a model making predictions at a step of only four hours ahead. 
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