
MATC
Report # MATC-MS&T: 128-3 Final Report

WBS: 25-1121-0005-128-3

Optimization of Transportation 
Infrastructure System Performance with 
Autonomous Maintenance Technology in 
Work Zones

Xianbiao Hu, PhD
Assistant Professor
Department of Civil, Architectural, and 
Environmental Engineering
Missouri University of Science and Technology

2024
A Cooperative Research Project sponsored by 
U.S. Department of Transportation- Office of the Assistant
Secretary for Research and Technology

The contents of this report reflect the views of the authors, who are responsible for the facts and 
the accuracy of the information presented herein. This document is disseminated in the interest 

of information exchange. The report is funded, partially or entirely, by a grant from the U.S. 
Department of Transportation’s University Transportation Centers Program. However, the U.S. 

Government assumes no liability for the contents or use thereof.

Qing Tang
PhD Student

Genda Chen, PhD
Professor



Optimization of Transportation Infrastructure System Performance with Autonomous 

Maintenance Technology in Work Zones  

 

Xianbiao Hu, Ph.D. 
Assistant Professor  
Department of Civil, Architectural, and 
Environmental Engineering 
Missouri University of Science and 
Technology 
 
Qing Tang, Ph.D. Student 
Department of Civil, Architectural, and 
Environmental Engineering 
Missouri University of Science and 
Technology  

 
Genda Chen, Ph.D.  
Professor 
Department of Civil, Architectural, and 
Environmental Engineering 
Missouri University of Science and 
Technology  
 
 
 
 

 

 

 

 

A Report on Research Sponsored by 

 

Mid-America Transportation Center 

University of Nebraska–Lincoln 

 

 

 

July 2024 

  



ii 

 

TECHNICAL REPORT DOCUMENTATION PAGE 
 

1. Report No. 

25-1121-0005-128-3 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

Optimization of Transportation Infrastructure System Performance with Autonomous 
Maintenance Technology in Work Zones 

5. Report Date 

September 2024 

6. Performing Organization Code  

7. Author(s) 

Xianbiao Hu, PhD, ORCID: https://orcid.org/0000-0002-0149-1847; 
Qing Tang; Genda Chen, Ph.D., P.E., ORCID: https://orcid.org/0000-0002-0658-
4356 

8. Performing Organization Report No.  

25-1121-0005-128-3 

9. Performing Organization Name and Address 

Center for Intelligent Infrastructure 
Missouri University of Science and Technology  
500 W. 16th Street, Rolla, MO 65409-0810 
Pennsylvania State University 
212 Sackett Building. University Park, PA 16802 
 

10. Work Unit No. 

 

11. Contract or Grant No. 

69A35517471707 

12. Sponsoring Agency Name and Address 

Office of the Assistant Secretary for Research and Technology 
1200 New Jersey Ave., SE 
Washington, D.C. 20590 
 

13. Type of Report and Period Covered 

Final Report   
January 1, 2021, - June 30, 2024 
14. Sponsoring Agency Code 

MATC TRB RiP No. 91994-90 

15. Supplementary Notes 

This work was sponsored by the U.S. Department of Transportation under the Auspices of Mid-America Transportation Center. 

16. Abstract 

Work zone maintenance is essential to the efficiency and safety of transportation infrastructure system. A recent technology named 
autonomous maintenance technology (AMT) is gaining rapid attention to eliminate fatalities of Department of Transportation 
(DOT) employees in work zones. Traffic flow will redistribute in the network once the link performance function (LPF) is updated 
after maintenance, and thus the equilibrium travel time (ETT) will change accordingly. In an extreme example, Braess’s paradox, 
i.e. adding or improving one roadway segment may actually lead to a worse traffic condition, may be observed. This project aims 
to support DOT decision-makers to determine which road segment to prioritize for maintenance, with the goal of maximizing 
transportation system performance. To this end, a user equilibrium (UE) model will be developed to quantify the impact of 
roadway segment maintenance. Sensitivity analysis will then be conducted to compute the marginal cost of ETT. Last but not the 
least, maintenance priority will be suggested to DOT to maximize the transportation infrastructure system performance. 
 
17. Key Words 

Autonomous Truck Mounted Attenuator (ATMA); Maintenance 
Optimization; Effective Discharge Rate; Moving Bottleneck; Level 

of Service (LOS); 

18. Distribution Statement 

No restrictions.  

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of Pages 

34 

22. Price 

 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



 

iii 

 

Table of Contents 
List of Abbreviations ...................................................................................................................... v 
Disclaimer ...................................................................................................................................... vi 
Abstract ......................................................................................................................................... vii 
Chapter 1 Introduction .................................................................................................................... 1 
Chapter 2 Preliminaries................................................................................................................... 6 

2.1 ATMA Moving Bottleneck and Capacity Drop............................................................ 6 
2.2 Queuing-based Time-dependent Travel Time Function ............................................... 8 

Chapter 3 ATMA Routing Optimization ...................................................................................... 12 
3.1 Overview of the Modeling Framework....................................................................... 12 
3.2 Formulation of Traffic Assignment Problem .............................................................. 13 
3.3 Solution Algorithm ..................................................................................................... 14 

Chapter 4 Numerical Analysis ...................................................................................................... 19 
4.1 Methodology Validation and Benefit Analysis........................................................... 19 
4.2 Routing Plan Benefit Analysis .................................................................................... 22 

4.2.1 Convergence Pattern .................................................................................... 23 
4.2.2 Benefit Analysis ........................................................................................... 25 

4.3 Sensitivity Analysis .................................................................................................... 28 
4.3.1 When Demand Changes ............................................................................... 28 
4.3.2 When ATMA speed change changes ........................................................... 29 

Chapter 5 Conclusion .................................................................................................................... 31 
References ..................................................................................................................................... 32 

   



 

iv 

 

List of Figures 

Figure 2.1 Schematic diagram of a four-lane highway (one direction) segment with ATMA 
vehicles. .................................................................................................................................. 6 

Figure 2.2 Flow-density relationship from both a moving observer’s view and a stationary 
observer’s view. ...................................................................................................................... 7 

Figure 2.3 Queue formation and dissipation processes: (a) time-varying demand curve; (b) queuing 
profile. ..................................................................................................................................... 9 

Figure 2.4 Cumulative curves and time-dependent travel time with (a) constant capacity and (b) 
discounted capacity. .............................................................................................................. 10 

Figure 3.1 Overview of the modeling framework with bi-level objectives. ................................. 13 
Figure 4.1 The simple network topology. ..................................................................................... 19 
Figure 4.2 Convergence pattern. ................................................................................................... 20 
Figure 4.3 Relative gap comparison of proposed model and two benchmark models. ................ 22 
Figure 4.4 Sioux Falls Test Network. ........................................................................................... 24 
Figure 4.5 Cumulative histogram of relative gap. ........................................................................ 25 
Figure 4.6 Cumulative histogram of corrected relative gap compared with benchmark models. 26 
Figure 4.7 System cost and travel time of ten paths. .................................................................... 28 
Figure 4.8 Additional TSTT compared with no ATMA when demand changes. ......................... 29 
Figure 4.9 Additional TSTT compared with no ATMA when demand changes. ......................... 30 
 

  



 

v 

 

List of Abbreviations  

Autonomous Maintenance Technology (AMT) 
Autonomous Truck Mounted Attenuator (ATMA) 
Automated Driving System (ADS) 
Connected and Autonomous Vehicle (CAV) 
Cross Track Error (CTE) 
Department of Transportation (DOT) 
Follower Truck (FT) 
Global Positioning System (GPS) 
Lead Truck (LT) 
Missouri Department of Transportation (MoDOT) 
Operator Control Unit (OSU) 
Radio Frequency (RF) 
Sensitivity Analysis Factor (SAF) 
System Control Unit (SCU) 
User Interface (UI) 
Vehicle-to-Vehicle (V2V) 
 

  



 

vi 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 

and the accuracy of the information presented herein. This document is disseminated in the interest 

of information exchange. The report is funded, partially or entirely, by a grant from the U.S. 

Department of Transportation’s University Transportation Centers Program. However, the U.S. 

Government assumes no liability for the contents or use thereof.  



 

vii 

 

Abstract 

Work zone maintenance is essential to the efficiency and safety of transportation 

infrastructure system. A recent technology named autonomous maintenance technology (AMT) is 

gaining rapid attention to eliminate fatalities of Department of Transportation (DOT) employees 

in work zones. Traffic flow will redistribute in the network once the link performance function 

(LPF) is updated after maintenance, and thus the equilibrium travel time (ETT) will change 

accordingly. In an extreme example, Braess’s paradox, i.e. adding or improving one roadway 

segment may actually lead to a worse traffic condition, may be observed. This project aims to 

support DOT decision-makers to determine which road segment to prioritize for maintenance, with 

the goal of maximizing transportation system performance. To this end, a user equilibrium (UE) 

model will be developed to quantify the impact of roadway segment maintenance. Sensitivity 

analysis will then be conducted to compute the marginal cost of ETT. Last but not the least, 

maintenance priority will be suggested to DOT to maximize the transportation infrastructure 

system performance. 

Keywords: Autonomous Truck Mounted Attenuator (ATMA); Maintenance Optimization; 

Effective Discharge Rate; Moving Bottleneck; Level of Service (LOS); 
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Chapter 1 Introduction 

Work zone maintenance is essential to the efficiency and safety of transportation systems. 

Unfortunately, the growing wear and tear to our nation’s roads have left 43% of our public 

roadways in poor or mediocre condition [1]. In 2020 alone, USDOT spent a total of $24 billion to 

preserve national highway systems. In particular, mobile and slow-moving operations such as 

striping, sweeping, bridge flushing, and pothole patching are critical for the efficient and safe 

operation of a highway transportation system. However, frequent accidents are a great threat to the 

safety of public and roadway maintenance engineers in work zones. For example, in Missouri, 

slow-moving operation vehicles have been involved in crashes more than 80 times since 2013, 

resulting in many injuries to DOT workers [2]. Reducing hazards and achieving a safer 

environment for DOT workers remains an urgent problem.  

State DOTs have been committed to reducing fatalities of DOT engineers by developing 

and applying advanced technologies. The Autonomous Truck Mounted Attenuator (ATMA) 

vehicle system is a quickly emerging technology that combines the use of connected and 

autonomous vehicle (CAV) capabilities and Autonomous Maintenance Technology (AMT), to 

maintain transportation infrastructure in work zones. Promoted by FHWA and many State DOTs, 

ATMA is a niche CAV application in the leader-follower style, to remove the necessity of DOT 

workers in the following maintenance truck and, subsequently, reduce fatalities in work zones. For 

example, Colorado and Missouri are among the first states in the U.S. to test and deploy ATMA 

vehicles to remove DOT workers from the driver seat [3, 4]. California, Minnesota, Virginia, Ohio, 

North Dakota, and Tennessee [5] are in the process of testing or deploying similar technologies. 

additionally, Colorado DOT is leading an autonomous maintenance technology pool fund with 15 
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state DOT members [6], together with the FHWA. A brief introduction of the ATMA system is 

presented in Section 2 and can also be found in this study’s references [4, 7-9]. 

However, the deployment plan of the ATMA system in a network has yet to be studied. 

We assume the normal route of the vehicle needs to maintain multiple links. Typically, ATMA 

vehicles start from a single origin and return to this same location. During maintenance operations, 

the slow-moving ATMA vehicles create a moving bottleneck that discounts the road capacity and 

leads to increased queue lengths and delays. Once the ATMA maintenance schedule is announced 

to the public in advance, general vehicles may choose alternative routes, resulting in different 

traffic assignment results based on user equilibrium (UE) principles compared to the scenario 

without ATMA. The presence of ATMA vehicles on different routes influences the system cost 

and the total system travel time (TSTT). The objective of this research is to identify the optimal 

routing of the ATMA system for transportation infrastructure maintenance, from the perspective 

of the entire transportation system, and to minimize the loss of efficiency.  

The main challenge lies in conducting the UE traffic assignment, considering the time-

varying capacity reduction, to quantify the system cost induced by the ATMA operation. The user 

equilibrium traffic assignment problem (UETAP) has been studied since Beckmann et al. [10] 

introduced a mathematical program. Generally, traffic assignment methods can be classified into 

statistic traffic assignments (STAs) and dynamic traffic assignments (DTAs). The major difference 

between STAs and DTAs lies in the traffic flow models used. STA models rely on link 

performance functions, such as the Bureau of Public Roads (BPR) function, making it relatively 

easy to find UE, even for large-scale networks. The static user equilibrium traffic assignment 

problem (UETAP) can be mathematically formulated, ensuring the existence and uniqueness of 

equilibrium solutions under mild conditions. Several algorithms have been developed to solve the 
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STA problem, for instance, the Method of Successive Averages [11], Frank-Wolfe algorithm [12], 

Gradient Projection Method [13], and the Bush-based or origin-based algorithm [14]. STA models 

have been widely employed in traffic planning for their computational efficiency, low input 

requirements, and robustness, tractability, and accountability, as highlighted in Brederode et al. 

[15]. However, STA models exhibit limitations in accurately representing the congested condition 

as they fail to account for flow metering and spillback effects [16]. Additionally, STA models 

assume that all vehicles on a link experience the same travel time, which does not align with real-

world scenarios [17]. As such, traditional STA models are not applicable for the traffic assignment 

when considering the ATMA moving bottleneck.  

On the other hand, significant efforts have been made in the development of DTA models 

to predict the evolution of traffic conditions over the last decades. DTA models offer the advantage 

of capturing realistic traffic flow and driver responses by tracking time-varying link flows and 

travel times, leading to more accurate route choice determination. Existing DTA models and 

algorithms can be classified into analytical-based and simulation-based approaches [18]. Among 

them, simulation-based methods are more widely adopted due to their flexibility in network 

loading, ability to simulate traffic flow propagation, capture spatial and temporal vehicular 

interactions, and determine link and path travel costs. There are three methods in generating time-

dependent travel times: macroscopic [19, 20], mesoscopic [21, 22], and microscopic [23, 24] 

models. Mesoscopic simulation approaches are commonly utilized in the network loading module, 

which capture changes in traffic flow at a resolution of approximately 5 to 10 seconds [25]. For 

instance, DYNASMART [21], DYNAMIT [22, 26], and DTALite [27]. However, DTA models 

generally lack neat and exact mathematical properties, resulting in lack of convergence properties 

that are needed for applications [25, 28]. Moreover, simulation-based models, typically designed 
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as multiple resolution models, integrate the output of mesoscopic traffic simulators into 

macroscopic models. Nevertheless, this integration can introduce inconsistencies in traffic 

performance across different resolution levels, potentially leading to unrealistic oversaturated 

conditions [29]. In conclusion, DTA models do not guarantee UE or uniqueness and face 

challenges regarding computational efficiency, mathematical properties, and consistency in 

multiple resolution models. 

To address these limitations, a queuing-based traffic assignment approach is proposed to 

provide more accuracy on congested networks when considering capacity drop caused by ATMA 

vehicles. To this end, based on the fluid queue model, a queuing-based time-dependent (QBTD) 

travel time function is introduced, in which the time-dependent queue length is determined by 

time-varying demand and capacity. By incorporating this QBTD travel time function into the static 

UETAP, we introduce dynamic characteristics and establish this traffic assignment problem. 

Consequently, the inclusion of a time variable in Beckmann’s formulation renders the algorithms 

designed to solve the original UETAP inapplicable without modification. Subsequently, a path-

based algorithm is modified to solve the TAP at each time step size, achieving a dynamic user 

equilibrium. The proposed queuing-based traffic assignment approach is then utilized to determine 

the optimal routing for ATMA vehicles with the lowest system cost.  

The rest of this report is organized as follows: Section 2 presents the preliminaries of the 

capacity drop induced by moving bottleneck and the QBTD travel time function. The overall 

module with bi-level objectives is summarized in Section 3, encompassing a higher-level objective 

of identifying the optimal routing of ATMA vehicles and a lower-level goal of quantifying the 

system cost by conducting the UE traffic assignment considering capacity drop. A path-based 

algorithm is then modified to solve the UETAP in each time step. In Section 4, numerical 
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experiments are conducted to compare the performance with two benchmark models and 

investigate the quantitative impact of different routes on the traffic system. A sensitivity analysis 

is also performed to explore the changing impact of ATMA vehicles. Section 5 concludes this 

report. 
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Chapter 2 Preliminaries 

2.1 ATMA Moving Bottleneck and Capacity Drop 

We first introduce the capacity drop induced by the ATMA moving bottleneck. Figure 2.1 

describes a typical highway with two lanes of the same direction, and the traffic on both lanes 

going to the right side. The ATMA system is represented by the two vehicles in the red box, with 

a leader vehicle and a follower vehicle, and a gap distance of 𝐿𝐿gap between these two vehicles. 

Other general vehicles are represented by a smaller black vehicle icon. The speed of ATMA 

vehicles is denoted as 𝑣𝑣ATMA, and the cruising speed is 𝑣𝑣u. 

 

 

Figure 2.1 Schematic diagram of a four-lane highway (one direction) segment with ATMA 
vehicles. 

 

The theory from Newell [30] suggests that by employing appropriate coordinate 

transformation, a moving coordinate system can be transformed into an analysis of flow passing a 

stationary bottleneck. If we position a “moving observer” on the main road, traveling at the same 

speed as the ATMA vehicles, the two-lane roadway segments reduce to a stationary section with 

only one lane from the observer’s perspective. General vehicles, i.e., red vehicles in Figure 2.1, 

try to merge to a one lane segment, pass this moving bottleneck, and then switch back to two lane 

segments. Let us call the view from the moving observer’s perspective “moving coordinates”, and 

that from a stationary observer’s perspective “stationary coordinates”. As such, the moving 
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bottleneck capacity is the maximum discharge rate from a stationary observer’s perspective, with 

the presence of ATMA vehicles. Figure 2.2 presents q-k fundamental diagrams (FD) of a one-lane 

and a two-lane roadway. The moving observer’s view is marked with red (i.e., 𝑂𝑂𝑂𝑂𝑂𝑂), and the 

stationary observer’s view is marked with black (i.e., 𝑂𝑂𝑂𝑂′𝐼𝐼′). In the moving coordinate, the 

triangles 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂𝑂𝑂 represent the FD of the one-lane and two-lane segments, respectively. We 

use 𝑞𝑞∗ to denote the rate at which vehicles on the main road pass the moving observer. If adding a 

flow of 𝑘𝑘 ∙ 𝑣𝑣ATMA to 𝑞𝑞∗ , the resulting FD will be in the stationary coordinates [30], i.e., the 

triangles 𝑂𝑂𝑂𝑂′𝐿𝐿′  and 𝑂𝑂𝑂𝑂′𝐼𝐼′ . We have the angle of ∠𝐺𝐺′𝑂𝑂𝑂𝑂′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣u , angle of ∠𝐼𝐼′𝑂𝑂𝑂𝑂 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣ATMA, and the angle of ∠𝐺𝐺′𝐼𝐼′𝑂𝑂 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤. 

 

 

Figure 2.2 Flow-density relationship from both a moving observer’s view and a stationary 
observer’s view. 

 

In the stationary coordinate system, 𝐹𝐹′𝐽𝐽′ is the maximum discharge rate of the one-lane 

segment and 𝑂𝑂𝑂𝑂′ is its corresponding density. After a reduction by 𝑂𝑂𝑂𝑂′ ∙ 𝑣𝑣ATMA, or 𝐽𝐽𝐽𝐽′, it becomes 

𝐹𝐹𝐹𝐹′, which is the maximum discharge rate in the moving coordinate system. The traffic state of the 
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downstream bottleneck location is represented by point 𝐹𝐹, while that of the bottleneck upstream is 

represented by point 𝐻𝐻, which has the same outflow rate as point 𝐹𝐹 but with a higher density due 

to the queue. When we convert the moving coordinates back to the stationary coordinate’s points, 

points 𝐹𝐹  and 𝐻𝐻  become points 𝐹𝐹′  and 𝐻𝐻′ , after adding a flow of 𝑘𝑘 ∙ 𝑣𝑣ATMA . The point 𝐻𝐻’ 

determines the maximum discharge rate in the stationary coordinate system with ATMA moving 

bottleneck, i.e., the length of 𝐻𝐻’𝑀𝑀′, which is derived by Equation (1). For the detailed derivation 

process, please refer to Tang et al. [31].  

 

𝜇𝜇′ = 𝐻𝐻′𝑀𝑀′ = 𝜇𝜇 ∙
2𝑣𝑣u ∙ 𝑣𝑣ATMA + 𝑣𝑣ATMA ∙ 𝑤𝑤 + 𝑤𝑤 ∙ 𝑣𝑣u

2(𝑣𝑣ATMA + 𝑤𝑤) ∙ 𝑣𝑣u
  (1) 

 

where 𝑣𝑣u is the cruising speed of general vehicles and 𝑤𝑤 is the backward wave speed. If we use a 

new variable 𝜃𝜃 and make 𝜃𝜃 = 2𝑣𝑣u∙𝑣𝑣ATMA+𝑣𝑣ATMA∙𝑤𝑤+𝑤𝑤∙𝑣𝑣u
2(𝑣𝑣ATMA+𝑤𝑤)∙𝑣𝑣u

, Equation (1) becomes 𝜇𝜇′ = 𝜇𝜇 ∙ 𝜃𝜃, in which 

𝜃𝜃 is, essentially, the capacity discount factor due to the ATMA moving bottleneck.  

2.2 Queuing-based Time-dependent Travel Time Function 

Next, we introduce a queuing-based time-dependent (QBTD) travel time function 

considering the capacity drop. During uncongested states, the aggregated vehicle speed on each 

road link is relatively stable and is approximated using free-flow speed [32]. While the vehicle 

speed will decrease due to queuing under congested states, thus, the travel time for vehicles is the 

summation of the free-flow travel time and the time spent in the queue or delay. The duration of 

queueing or delay is time-varying as the traffic demand or capacity changes. Building upon the 

foundation work by Newell, which employs a fluid-based approximation method to describe queue 

formation and the dissipation process [33], we consider both uncongested and congested states. 
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Figure 2.3(a) provides an illustration of the demand-supply relationship. During peak hours from 

𝑡𝑡0 to 𝑡𝑡2, the demand (black curve), denoted as 𝜆𝜆(𝑡𝑡), exceeds the maximum discharge rate 𝜇𝜇 (red 

horizontal line), leading to the formation of a queue depicted in Figure 2.3(b). Subsequently, the 

queue starts to dissipate as the arrival rate falls below 𝜇𝜇, and is fully discharged at time 𝑡𝑡̅. The 

time-varying length of the queue at any given time 𝑡𝑡 can be calculated as: 

 

𝑄𝑄(𝑡𝑡) = � (𝜆𝜆(𝜏𝜏) − 𝜇𝜇)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑 (2) 

 

 

Figure 2.3 Queue formation and dissipation processes: (a) time-varying demand curve; (b) 
queuing profile. 

 

Figure 2.4(a) illustrates the cumulative arrival curve 𝐴𝐴(𝑡𝑡) and departure curve 𝐷𝐷(𝑡𝑡). To 

describe the queue at time 𝑡𝑡, we shift the cumulative arrival curve by the free flow travel time to 

obtain a virtual arrival curve 𝑉𝑉(𝑡𝑡). Hence, the time-dependent queue length 𝑄𝑄(𝑡𝑡) can be expressed 

as: 

𝑄𝑄(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) − 𝐷𝐷(𝑡𝑡) (3) 
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The horizontal distance between 𝑉𝑉(𝑡𝑡) and 𝐷𝐷(𝑡𝑡) corresponds to the time-dependent delay: 

𝑤𝑤(𝑡𝑡) =
𝑄𝑄(𝑡𝑡)
𝜇𝜇

 (4) 

 

As mentioned previously, the travel time consists of the free-flow travel time plus the time-

dependent delay. For a general purpose, the queuing-based time-dependent (QBTD) travel time 

for a specific link in a network can be derived as: 

 

𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑡𝑡𝑓𝑓 + 𝑤𝑤(𝑡𝑡 + 𝑡𝑡𝑓𝑓) (5) 

 

where 𝑡𝑡 represents the departure time or the arrival time at the upstream of a link, 𝑡𝑡𝑓𝑓 denotes the 

free-flow travel time for a link, 𝑤𝑤(𝑡𝑡 + 𝑡𝑡𝑓𝑓) the delay with the departure time 𝑡𝑡. 

 

  

Figure 2.4 Cumulative curves and time-dependent travel time with (a) constant capacity and (b) 
discounted capacity. 
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As the ATMA vehicles enter the roadway segment, it creates a moving bottleneck with an 

effective discharge rate of 𝜇𝜇′ until the ATMA vehicles depart the roadway segment. Figure 2.4(b) 

describes the cumulative arrival and departure curves that accounts for the discounted capacity as 

the ATMA vehicles traverse within a specific period [𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒]. As such, the queue still exists at time 

𝑡𝑡̅ and is discharged at time 𝑡𝑡̅′. The time-dependent delay time can be derived for different departure 

times at the upstream of a link. For example, if 𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡 + 𝑡𝑡𝑓𝑓 ≤ 𝑡𝑡𝑒𝑒, the delay time is derived as 

Equation (7). The FIFO property is still satisfied with the corresponding QBTD travel time 

function with capacity drop. 

 

𝑤𝑤(𝑡𝑡 + 𝑡𝑡𝑓𝑓) = (𝑡𝑡𝑒𝑒 − 𝑡𝑡 − 𝑡𝑡𝑓𝑓) +
𝑄𝑄(𝑡𝑡 + 𝑡𝑡𝑓𝑓) − (𝑡𝑡𝑒𝑒 − 𝑡𝑡 − 𝑡𝑡𝑓𝑓) ∙ 𝜇𝜇′ 

𝜇𝜇
 (6) 
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Chapter 3 ATMA Routing Optimization 

In this section, we begin by providing an overview of the modeling framework with bi-

level objectives. This framework encompasses a higher-level objective, which focuses on 

optimizing the ATMA route with the lowest system cost, and a lower-level objective, which 

involves conducting a UE traffic assignment. The TAP is then formulated using the QBTD travel 

time function and a modified path-based algorithm is developed to solve the UE problem.  

3.1 Overview of the Modeling Framework 

The selection of routes for ATMA vehicles results in different time-dependent capacity 

reduction patterns, which significantly affect the overall performance of the traffic system. In this 

study, we define the system cost of a particular route, denoted as 𝑟𝑟ATMA ∈ 𝑅𝑅, for ATMA vehicles 

as the difference between the total system travel time (TSTT) under the UE principle with and 

without ATMA operation, represented by Equation (8). 

 

𝐶𝐶𝑟𝑟ATMA = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟ATMA − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0  (7) 

 

The optimal route, denoted as 𝑟𝑟ATMA∗ , can be obtained by minimizing the cost function: 

𝑟𝑟ATMA∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝑟𝑟ATMA). The overview of the modeling framework with bi-level objectives is 

depicted in Figure 3.1, where the higher-level objective is dedicated to determining the optimal 

route and the lower-level is responsible for executing the traffic assignment process. Given a 

potential route 𝑟𝑟ATMA  for ATMA vehicles, the time-dependent capacity reduction can be 

determined and incorporated into the traffic assignment model.  

As a result, the system cost, 𝐶𝐶𝑟𝑟ATMA, associated with that specific ATMA vehicle route is 

obtained for each iteration loop. If the cost 𝐶𝐶𝑟𝑟ATMA is lower than the current minimum system cost 
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𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, both the minimum cost and the optimal route, 𝑟𝑟ATMA∗ , will be updated. The traffic assignment 

model incorporates the QBDT travel time function in the network loading module, using the given 

routes and route flows. K shortest algorithm [34, 35] are utilized to generate the route set for 

equilibrium studies. The resulting time-dependent travel time and delays are utilized in the path 

set update and adjustment modules. The updated routes and route flows are then fed back into the 

network loading modules until the stop criteria are satisfied. 

 

 

Figure 3.1 Overview of the modeling framework with bi-level objectives. 

 

3.2 Formulation of Traffic Assignment Problem 

To achieve the lower-level objective, a TAP is first formulated using the QBTD travel time 

function. Before formulating this queuing-based TAP, two assumptions are made: 1) each driver 

wants to choose the path between their origin and destination with the shortest travel time; and 2) 

the time-dependent link flow 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) is continuous and differentiate. 
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According to Beckmann’s function [10], we reformulate our queuing-based TAP utilizing the 

QBTD travel time function as follows:  

 

min  𝑓𝑓(𝒉𝒉, 𝑡𝑡) = � � 𝑡𝑡𝑖𝑖𝑖𝑖(𝑡𝑡)
∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝜋𝜋ℎ𝜋𝜋𝜋𝜋∈Πrs

0
𝑑𝑑𝑑𝑑

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 
 

(8) 

s. t. 𝑥𝑥𝑖𝑖𝑖𝑖 = � 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋ℎ𝜋𝜋
𝜋𝜋∈Πrs

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (9) 

 � ℎ𝜋𝜋 = 𝑑𝑑𝑟𝑟𝑟𝑟
𝜋𝜋∈Π𝑟𝑟𝑟𝑟

 ∀𝑟𝑟 ∈ 𝑂𝑂,∀𝑠𝑠 ∈ 𝐷𝐷 (10) 

 𝑡𝑡𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 + 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 ) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (11) 

 
𝑤𝑤𝑖𝑖𝑖𝑖�𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 � =
𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 )
𝜇𝜇

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (12) 

 
𝑄𝑄𝑖𝑖𝑖𝑖�𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 � = � �𝑥𝑥𝑖𝑖𝑖𝑖(𝜏𝜏) − 𝜇𝜇�𝑑𝑑𝑑𝑑
𝑡𝑡+𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓

0
 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (13) 

 ℎ𝜋𝜋 ≥ 0  ∀𝜋𝜋 ∈ Πrs (14) 

 

The UE traffic assignment was the solution to the above optimization problem. 

3.3 Solution Algorithm 

Once we incorporate the dynamic characteristics into the traditional SUE traffic assignment, 

the queuing-based TAP can achieve UE at each timer interval by employing one of the path-based 

algorithms, the gradient projection method. Different from the conventional link performance 

function, such as the BPR function, the travel time function described by Equation (12) is dynamic 

and incorporates time 𝑡𝑡 as a new variable. Consequently, the traditional gradient projection method 
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is inapplicable for addressing this queuing-based TAP. As a result, adjustments are required in the 

gradient projection method to effectively solve the problem. 

The time-dependent Beckmann function 𝑓𝑓(𝒉𝒉, 𝑡𝑡)  is in terms of path flow ℎ𝜋𝜋 shown in 

Equation (9) and its partial derivative with respect to any path flow ℎ𝜋𝜋 is given by Equation (16). 

 

𝜕𝜕𝜕𝜕(𝒉𝒉, 𝑡𝑡)
𝜕𝜕ℎ𝜋𝜋

= � 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋(𝑡𝑡) ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 �� 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋ℎ𝜋𝜋
𝜋𝜋∈Πrs

, 𝑡𝑡� = � 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡�
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

= 𝑐𝑐𝜋𝜋(𝑡𝑡)
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (15) 

 

Thus, the direction of steepest descent is the negative gradient −∇𝐡𝐡𝑓𝑓 = −vect�𝑐𝑐𝜋𝜋(𝑡𝑡)�. We define 

the basic path to be a path 𝜋𝜋� with shortest travel time, and all the other paths are nonbasic paths. 

Then the constraint of capacity in Equation (11) can be transformed into Equation (17) by 

eliminating the basic path flow variable.  

 

ℎ𝜋𝜋� = 𝑑𝑑𝑟𝑟𝑟𝑟 −� ℎ𝜋𝜋
𝜋𝜋∈Π�𝑟𝑟𝑟𝑟−{𝜋𝜋�}

 (16) 

 

Substituting Equation (17) into the time-dependent Beckmann function (Eq. (9)), it becomes: 

𝑓𝑓(𝒉𝒉, 𝑡𝑡) = � � 𝑡𝑡𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡�
𝛿𝛿𝑖𝑖𝑖𝑖
𝜋𝜋� (𝑑𝑑−∑ ℎ𝜋𝜋𝜋𝜋∈Π�𝑟𝑟𝑟𝑟−{𝜋𝜋�} )+∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝜋𝜋ℎ𝜋𝜋𝜋𝜋∈Π�𝑟𝑟𝑟𝑟−{𝜋𝜋�}

0
𝑑𝑑𝑑𝑑

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 

     = � � 𝑡𝑡𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑡𝑡)
𝛿𝛿𝑖𝑖𝑖𝑖
𝜋𝜋� (𝑑𝑑−∑ ℎ𝜋𝜋𝜋𝜋∈Π�−{𝜋𝜋�} )+∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝜋𝜋ℎ𝜋𝜋𝜋𝜋∈Π�−{𝜋𝜋�}

0
𝑑𝑑𝑑𝑑

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 

(17) 
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The partial derivative with respect to one of the nonbasic path flow is now: 

𝜕𝜕𝑓𝑓(𝒉𝒉, 𝑡𝑡)
𝜕𝜕ℎ𝜋𝜋

= � �𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 − 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋�� ∙ 𝑡𝑡𝑖𝑖𝑖𝑖(𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋�(𝑑𝑑 −� ℎ𝜋𝜋′
𝜋𝜋′∈Π�−{𝜋𝜋�}

) + � 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋′ℎ𝜋𝜋′
𝜋𝜋∈Π�−{𝜋𝜋�}

, 𝑡𝑡)
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

= � �𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 − 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋�� ∙ 𝑡𝑡𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡)
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

= 𝑐𝑐𝜋𝜋(𝑡𝑡) − 𝑐𝑐𝜋𝜋�(𝑡𝑡) 

(18) 

 

Let ∆ℎ denote the amount of flow shifted away from the non-basis path 𝜋𝜋 onto the basic path 𝜋𝜋�  at 

a time step size and let 𝑐𝑐𝜋𝜋(∆ℎ, 𝑡𝑡) and 𝑐𝑐𝜋𝜋�(∆ℎ, 𝑡𝑡) denote the travel times on path 𝜋𝜋 and 𝜋𝜋�  after 

shifting. Our purpose is choosing a ∆ℎ to make the difference between 𝑐𝑐(∆ℎ, 𝑡𝑡) and 𝑐𝑐𝜋𝜋�(∆ℎ, 𝑡𝑡) 

equal to zero at each time interval. Define 𝑔𝑔(∆ℎ, 𝑡𝑡)  as the difference travel time between a 

nonbasic path and basic path after shifting the flow. 

 

𝑔𝑔(∆ℎ, 𝑡𝑡) = 𝑐𝑐𝜋𝜋(∆ℎ, 𝑡𝑡) − 𝑐𝑐𝜋𝜋�(∆ℎ, 𝑡𝑡) = � �𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 − 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋�� ∙ 𝑡𝑡𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖(∆ℎ), 𝑡𝑡)
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (19) 

 

So 

𝜕𝜕𝜕𝜕(∆ℎ, 𝑡𝑡)
𝜕𝜕∆ℎ

= � �𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 − 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋�� ∙
𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖(∆ℎ, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖
𝜕𝜕∆ℎ

= − �
𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖(∆ℎ, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐴𝐴3∪𝐴𝐴4

 (20) 

where 𝐴𝐴3 = {(𝑖𝑖, 𝑗𝑗)|𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 = 1 and 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋� = 0} and 𝐴𝐴4 = {(𝑖𝑖, 𝑗𝑗)|𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋 = 0 and 𝛿𝛿𝑖𝑖𝑖𝑖𝜋𝜋� = 1}. 

 

Based on the assumption that the link flow is continuous and differentiate, Newton’s method is 

adopted to estimate the shifted flow ∆ℎ at each time interval. 
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∆ℎ = 0 −
𝑔𝑔(0, 𝑡𝑡)
𝑔𝑔′(0, 𝑡𝑡)

=
𝑐𝑐𝜋𝜋(∆ℎ, 𝑡𝑡) − 𝑐𝑐𝜋𝜋�(∆ℎ, 𝑡𝑡)

∑
𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖(∆ℎ, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐴𝐴3∪𝐴𝐴4

 (21) 

 

The amount of flow to shift is then: 

∆ℎ = min{ℎ𝜋𝜋,
𝑐𝑐𝜋𝜋(∆ℎ, 𝑡𝑡) − 𝑐𝑐𝜋𝜋�(∆ℎ, 𝑡𝑡)

∑
𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖(∆ℎ, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐴𝐴3∪𝐴𝐴4

} (22) 

 

Next, we need to derive 𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖

 to solve our proposed semi-dynamic UE traffic assignment problem. 

If the problem is formulated in continuous time, we can derive the first derivation of travel time 

function to the link flow as Equation (24).  

 

𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡�
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖

=
𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡)

/
𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (23) 

 

Since the link flow 𝑥𝑥𝑖𝑖𝑖𝑖 is unknown before we perform the traffic assignment, it is impossible to 

derive the first derivation unless an exact function is given. Moreover, solving continuous-time 

models in large-scale networks could be challenge and hence numerical solution algorithms are 

usually developed based on discretized time intervals (e.g., Ziliaskopoulos [36], Qian et al. [37], 

and Long et al. [38]). To simplify the proximation process of the first derivation of 𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖

, we take 

the discretized time interval in this report. The analysis period is denoted as 𝑇𝑇, with a time interval 

set as ∆𝑡𝑡. Therefore, the total number of time intervals is 𝑀𝑀 = 𝑇𝑇/∆𝑡𝑡  with each interval 𝑚𝑚 =
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{1,2, … ,𝑀𝑀}. We then assume that the flow on any link (𝑖𝑖, 𝑗𝑗) is a constant for each 𝑘𝑘𝑡𝑡ℎ time interval 

∆𝑡𝑡. In this case, the queue length at the 𝑚𝑚𝑡𝑡ℎ time interval becomes: 

𝑄𝑄𝑖𝑖𝑖𝑖(𝑚𝑚 ∙ ∆𝑡𝑡) = � �𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚 − 𝜇𝜇𝑖𝑖𝑖𝑖�𝑑𝑑𝑑𝑑
𝑚𝑚∙∆𝑡𝑡

(𝑚𝑚−1)∙∆𝑡𝑡
 (24) 

 

The time-dependent delay time can be calculated as  

𝑤𝑤𝑖𝑖𝑖𝑖(𝑚𝑚 ∙ ∆𝑡𝑡) =
𝑄𝑄𝑖𝑖𝑖𝑖(𝑚𝑚 ∙ ∆𝑡𝑡)

𝜇𝜇𝑖𝑖𝑖𝑖
=
∫ �𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚 − 𝜇𝜇𝑖𝑖𝑖𝑖�𝑑𝑑𝑑𝑑
𝑚𝑚∙∆𝑡𝑡

(𝑚𝑚−1)∙∆𝑡𝑡

𝜇𝜇𝑖𝑖𝑖𝑖
 (25) 

 

Then the QBTD travel time function on link (𝑖𝑖, 𝑗𝑗) is  

�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑚𝑚 ∙ ∆𝑡𝑡� = 𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 + 𝑤𝑤𝑖𝑖𝑖𝑖�𝑚𝑚 ∙ ∆𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 � = 𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 +

∫ �𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚+𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 /∆𝑡𝑡
− 𝜇𝜇𝑖𝑖𝑖𝑖� 𝑑𝑑𝑑𝑑

𝑚𝑚∙∆𝑡𝑡+𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓

(𝑚𝑚−1)∙∆𝑡𝑡+𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓

𝜇𝜇𝑖𝑖𝑖𝑖

= 𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 +

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚+𝑡𝑡𝑖𝑖𝑖𝑖

𝑓𝑓 /∆𝑡𝑡
− 𝜇𝜇𝑖𝑖𝑖𝑖� ∙ ∆𝑡𝑡

𝜇𝜇𝑖𝑖𝑖𝑖
 

(26) 

 

We can derive the 𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖

 as Equation (28) 

𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖,𝑚𝑚 ∙ ∆𝑡𝑡�
𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖

= �
∆𝑡𝑡

𝜇𝜇𝑖𝑖𝑖𝑖(𝑚𝑚 ∙ ∆𝑡𝑡)
, if 𝑥𝑥𝑖𝑖𝑖𝑖 > 𝜇𝜇𝑖𝑖𝑖𝑖

0,                           if 𝑥𝑥𝑖𝑖𝑖𝑖 < 𝜇𝜇𝑖𝑖𝑖𝑖
 (27) 

 

To outline the procedure of the queuing-based traffic assignment, we first introduce some notations. 

An origin-destination (OD) pair is represented by 𝑛𝑛 ∈ {1,2, … ,𝑁𝑁} with a path set denoted as Π𝑛𝑛 

and individual paths within the set as 𝜋𝜋𝑛𝑛 ∈ Π𝑛𝑛. The travel time for each path is denoted as 𝑐𝑐𝜋𝜋𝑚𝑚.   
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Chapter 4 Numerical Analysis 

To validate and assess the queuing-based traffic assignment approach, we conducted numerical 

experiments on two different network sizes: a small-size simple network and the Sioux Falls 

network. Initially, we verified the convergence pattern of our proposed algorithm and assessed the 

benefits of incorporating capacity drop modeling and the QBTD travel time function in the UE 

traffic assignment. Additionally, we utilized the queuing-based approach to analyze the impact of 

ATMA vehicles on the overall traffic system and identify the optimal route with the lowest system 

cost. A sensitivity analysis was also performed to examine how the results vary with changes in 

demand and the travel speed of ATMA vehicles. The experiments were conducted using 

Path4GMNS [39], an open-source platform for UE traffic assignment, which was adapted and 

modified to accommodate our queuing-based TAP. 

4.1 Methodology Validation and Benefit Analysis 

Figure 4.1 illustrates the topology of the small-size network. The traffic demand from the 

origin node 1 to the destination node 4 is 6,000 veh/hr. Two paths are available: P1 (1,4) and P2 

(1,2,3,4). For each link, the free flow travel speed is 40 mph, and the backward wave speed is 12 

mph. Additionally, the capacity of each link is 3,000 veh/hr. The first path has a free flow travel 

time of 90 s, while the second path has a free flow travel time of 135 s. 

 

 

Figure 4.1 The simple network topology. 
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Initially, we verified the convergence pattern of the adjusted gradient projection algorithm, 

which incorporates the QBTD travel time function. In the algorithm, we examined various time 

intervals ranging from 5 s to 1 min to analyze the convergence pattern. Figure 4.2 illustrates the 

convergence pattern as the time interval increases. Notably, we observed that it requires seven 

iterations to converge to 0.01% when the time interval is set to 5 s, while it requires 28 iterations 

if the time interval is 1 min. As the time interval increases, the initial relative gap also increases, 

consequently necessitating more iterations to achieve convergence. 

 

 

Figure 4.2 Convergence pattern. 

 

Next, we conducted experiments to evaluate the performance of the proposed queuing-

based traffic assignment approach. For each time interval, we employed the adjusted gradient 

projection method to perform the UE traffic assignment. In this algorithm, we incorporated the 

QBTD travel time function, considering capacity drop. To assess the benefits of our proposed 

model, we established two benchmark models. In the first benchmark model, capacity drop was 

ignored in the QBTD travel time function during the UE traffic assignment. However, realistic 
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capacity was considered to determine actual travel time and relative gap. By comparing the 

proposed model with this benchmark model, we could analyze the benefits of capacity drop 

modeling. In the second benchmark model, the BPR travel time function considering capacity drop 

was employed for the UE traffic assignment in each time interval. While the QBTD travel time 

function, accounting for capacity drop, was used to calculate the actual travel time and relative 

gap. By comparing the proposed model with the second benchmark model, we could observe the 

advantages of using the QBTD travel time function. In the experiment, the total time was set to 

600 s with a time interval of 30 s. We assumed that the link (1,4) required maintenance, which was 

carried out by slow-moving ATMA vehicles with a speed of 3.5 m/s. The total maintenance time 

was 460 s, during which the effective discharge rate on link (1,4) decreased. Once the maintenance 

was completed, the link’s capacity returned to normal. For each time interval, a UE traffic 

assignment was performed, and the queuing length and travel time of the link were updated 

accordingly. Figure 4.3 presents a comparison of the relative gaps between the proposed model 

and the two benchmark models. The blue line represents the relative gap of the proposed model, 

which remains close to 0.0%. It can be observed that the corrected relative gap of benchmark 

model 1 (depicted by the orange line) gradually increases to 60% during the capacity reduction 

period and then drops to around 40% after the capacity returned to normal. This implies that if we 

disregard the capacity drop in the UE traffic assignment, the resulting mismatched path flow will 

deviate from UE in this simple network. Furthermore, when utilizing the static BPR travel time 

function in the UE traffic assignment, the corrected relative gap (illustrated by the green line) 

exhibits a continuing increase up to 82%. It indicates that if the congested condition is not captured, 

the resulting path flow significantly deviates from the equilibrium. 
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Figure 4.3 Relative gap comparison of proposed model and two benchmark models. 

 

4.2 Routing Plan Benefit Analysis 

This section focuses on examining the benefits of the proposed model in the routing plan 

for ATMA vehicles. In a network, multiple links may require simultaneous maintenance, which 

poses a challenge in finding the optimal route for ATMA vehicles. Typically, the shortest path is 

considered the best choice. However, the slow-moving ATMA vehicles become a moving 

bottleneck, leading to capacity drops. Consequently, the link queue length and travel time increase 

during the maintenance period. For different routes, it is necessary to determine the time-varying 

capacity for specific links. Our proposed model incorporates capacity reduction in the UE traffic 

assignment and quantifies the impact of various ATMA routes on the traffic system. The obtained 

results will be compared with those of the two benchmark models to evaluate the effectiveness of 

our approach. 
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4.2.1 Convergence Pattern 

To illustrate the impact of different routes, we will consider the Sioux Falls network [40], 

as depicted in Figure 4.4. This network consists of 24 nodes and 75 links. The free flow travel 

speed is 60 mph, while the backward wave speed is 20 mph. In our analysis, we will focus on the 

maintenance of four specific links: (6,8), (16,17), (15,22), and (11,14), which are represented by 

the red links in Figure 4.4. The travel speed of ATMA vehicles during maintenance is set to 10 

mph. There are multiple routes available for ATMA vehicles with different origins and 

destinations. In this study, we select node 6 as the origin and node 14 as the destination. 

Specifically, we consider the impact of the shortest 10 paths on TSTT. For instance, the free flow 

travel time (FFTT) for general traffic of the shortest path is 38 min, whereas for ATMA vehicles, 

it increases to 228 min. The FFTT for the other nine paths ranges from 39 min to 48 min for general 

traffic, and from 234 min to 288 min for ATMA vehicles. 
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Figure 4.4 Sioux Falls Test Network. 

 

The experiment was conducted over a total duration of five hours, with a time interval of 

five seconds, resulting in 3,600 intervals in total. Convergence criteria were established, requiring 

either a maximum of 20 iterations or a relative gap below 0.1% for each time interval. During our 

experimental analysis, we thoroughly investigated the ten different paths characterized by varying 

capacity drop patterns. The results of our study exhibited an impressive level of convergence, with 

relative gaps below 0.1% observed in 98.9% to 99.1% of all time intervals across the examined 

paths. For instance, Figure 4.5 presents a cumulative histogram of relative gap. These results 

demonstrate the effectiveness of the proposed queueing-based traffic assignment and the modified 

path-based algorithm in achieving convergence. 
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Figure 4.5 Cumulative histogram of relative gap. 

 

4.2.2 Benefit Analysis  

To evaluate the benefits of the capacity drop modeling and the QBTD travel time function, 

we conducted experiments for each path using the proposed model and two benchmark models. 

Figure 4.6 presents cumulative histograms comparing the corrected relative gaps of the benchmark 

models with those of the proposed model. The results reveal significant deviations from the UE in 

the benchmark model 1, with corrected relative gaps exceeding 0.1% observed in 90.4% to 99.1% 

of all time intervals across the examined paths when the capacity reduction is disregarded. 

Additionally, when the UE traffic assignment utilizes the BPR function instead of the QBTD travel 

time function, the results demonstrate substantial deviations from the UE, with corrected relative 

gaps exceeding 2% observed in 98.9% of all time intervals across the examined paths. This 

highlights the inadequacy of the static BPR travel time function in capturing time-varying 

information and its consequent significant deviation from the user equilibrium. 



 

26 

 

Table 1 provides a summary of the average corrected relative gaps for the 10 paths between the 

proposed model and the two benchmark models. The average relative gap for the proposed model 

is approximately 0.019%. However, if the capacity reduction is disregarded in the UE traffic 

assignment process, the average relative gap increases to a range of 0.286% to 0.582%. 

Additionally, when using the static BPR travel time function, the average relative gap sharply 

increases to a range of 11.71% to 11.86%. These results highlight the substantial impact of 

considering capacity drop and utilizing the QBTD travel time function in achieving a closer 

approximation to the user equilibrium. 

 

 

Figure 4.6 Cumulative histogram of corrected relative gap compared with benchmark models. 
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Table 4.1 Comparison of Average Relative Gap 

 Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8 Path 9 Path 10 

Proposed model 0.019% 0.019% 0.019% 0.018% 0.019% 0.019% 0.019% 0.018% 0.019% 0.019% 

Benchmark model 1 0.573% 0.448% 0.307% 0.405% 0.582% 0.323% 0.286% 0.410% 0.408% 0.526% 

Benchmark model 2 11.71% 11.71% 11.84% 11.78% 11.72% 11.86% 11.80% 11.79% 11.73% 11.75% 

 

After analyzing the benefits of the proposed model, we proceed to investigate the impact 

of different ATMA routes on the traffic system travel time. The initial TSTT without ATMA 

vehicles is recorded as 5,656,962 hours. However, with the introduction of ATMA vehicles for 

maintenance, the TSTT experiences a noticeable increase. Figure 4.7 illustrates the increased 

TSTT compared to the TSTT in the absence of ATMA maintenance and the travel time of different 

paths. It is observed that as the path travel time increases, the additional TSTT does not necessarily 

increase proportionally. For instance, Path 10 results in TSTT having the largest increase of 1.25%. 

On the other hand, paths 2, 7, and 9 have relatively low impacts on the total traffic system, for 

example, Path 9 yields the smallest increase in TSTT with 0.91%. However, the shortest path, Path 

1, exerts a higher impact on the total traffic system, resulting in an increase of 1.11% in TSTT. 
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Figure 4.7 System cost and travel time of ten paths. 

 

4.3 Sensitivity Analysis  

In this section, sensitivity analysis of the Sioux Falls network is conducted to explore how 

the impact on the total traffic system changes when traffic demand and the speed of ATMA 

vehicles change.  

4.3.1 When Demand Changes 

The demand for each OD pair is set to increase by 10%, 20%, and 30%, respectively, to 

investigate the impact on the total traffic system. The TSTT experiences a significant increase 

without ATMA vehicles as the demand rises. For instance, when the demand increases by 10%, 

the TSTT increases by 38%. Furthermore, with a 30% increase in demand, the TSTT shows a 

substantial rise of 130%. This demonstrates the high sensitivity of the TSTT to changes in demand. 

Figure 4.8 presents the additional TSTT (or the system cost) with changing demand, illustrating 

that the rate of TSTT increase diminishes as demand rises. When comparing the TSTT with no 

ATMA vehicles, the increase in TSTT ranges from 0.77% to 1.09% for a 10% increase in demand. 
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In the case of a 20% increase in demand, the increase in TSTT ranges from 0.68% to 0.95%. 

Similarly, for a 30% increase in demand, it ranges from 0.60% to 0.86%. The system costs still 

exhibit significant variation among different routes of ATMA vehicles. Additionally, it is worth 

noting that paths 9 and 2 have minimal impact on system traffic, indicating that the optimal route 

for ATMA vehicles remains relatively unaffected by changes in demand. 

 

 

 

Figure 4.8 Additional TSTT compared with no ATMA when demand changes. 

 

4.3.2 When ATMA speed change changes 

We also conducted experiments to examine the impact of varying ATMA vehicle speed on 

the traffic system. Specifically, we considered speeds of 10 mph, 15 mph, and 20 mph, and 

analyzed the additional TSTT for 10 paths in comparison to scenarios without ATMA vehicles or 

capacity reduction. Figure 4.9 illustrates the additional TSTT with changing travel speeds. When 

the speed of ATMA vehicles is set at 10 mph, we observe an increase in TSTT ranging from 0.91% 
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to 1.25%. However, as the speed increases to 15 mph and 20 mph, the increase in TSTT ranges 

from 0.49% to 0.68% and 0.29% to 0.41%, respectively. These findings suggest that the rate of 

TSTT increase diminishes as the speed of ATMA vehicles increases. As the speed of ATMA 

vehicles increases, the disparity in system costs diminishes across various routes. We notice that 

paths 9 and 2 still have minimal impact on the system traffic, which indicates that the optimal route 

for ATMA vehicles remains relatively unaffected by variations in travel speed. 

 

 

Figure 4.9 Additional TSTT compared with no ATMA when demand changes. 
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Chapter 5 Conclusion 

In this study, we proposed a queuing-based traffic assignment approach to optimize the 

deployment of the ATMA system in a network. Our approach incorporated a QBTD travel time 

function that accounted for capacity drop, introducing dynamic characteristics into the static 

UETAP. We formulated the TAP by integrating the QBTD travel time function and modified a 

path-based algorithm to solve it, achieving user equilibrium. To validate the methodology, we 

conducted experiments on both a small-scale network and a larger network to investigate the 

convergence pattern. We compared the results with two benchmark models to analyze the benefits 

of time-varying capacity drop modeling and the QBTD travel time function. The corrected relative 

gap of the first benchmark model, which ignores capacity reduction, exhibited an average increase 

from 0.02% to 0.43% in the large-scale network. This highlighted the significant deviation from 

UE when capacity drop is disregarded in the UE traffic assignment. Furthermore, when using the 

static BPR travel time function, there was a more notable increase in the corrected relative gap, 

with an average relative gap of 11.78%. Additionally, we applied our proposed queuing-based 

traffic assignment model to a case study focused on optimizing routing for ATMA vehicles 

engaged in maintenance work in work zones. We investigated and quantified the impact of 

different paths on the traffic system. Our findings revealed that the shortest path does not guarantee 

the optimal route due to the impact of the time varying capacity reduction. The result of the 

sensitivity analysis demonstrates that system costs still exhibited significant variation among 

different routes of ATMA vehicles when the traffic demand increased. However, as the speed of 

ATMA vehicles increased, the disparity in system costs diminished across various routes. 
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