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 Abstract 

 Accurate and timely flood prediction can reduce the risk of flooding, bolster 

preparedness, and help build resilience. In this study, we have developed a flood forecasting 

system prototype and checked its potential for carrying out operational flood forecasting in the 

state of Nebraska. This system builds upon some of the core components of the Iowa Flood 

Forecasting System (IFIS), which is a state-of-the-art platform widely recognized around the 

world. We implemented our platform on a pilot basin in Nebraska (Elkhorn River basin) by 

installing eight stream sensors and setting up the hydrologic model component of IFIS, i.e., the 

Hillslope Link Model (HLM). Due to their importance in the Midwest, we particularly 

emphasized the snow processes and developed an improved HLM model that can account for 

different aspects of snow (rain-snow-partitioning, snowmelt, and snow accumulation) through 

simple parameterizations. Results show that the more thorough treatment of snow processes in 

the hydrologic model, as proposed herein, the better the performance of flood peak simulations. 

In this paper, we discuss different steps involved in developing the flood forecasting system 

prototype, along with the associated challenges and opportunities. 
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Chapter 1 Introduction 

The Midwest region shows substantial spatial heterogeneity in flood peaks with discrete 

seasonality (Villarini et al., 2011). Nebraska has distinct hydrological and hydroclimatic 

characteristics, which show sharp seasonal peaks in flood frequencies. One remarkable feature of 

The Great Plains of Nebraska is the summer maximum rainfall (Y. Zhang et al., 2001). These 

storms originating from the Rocky Mountains and traveling across Midwest US and causing 

heavy precipitation from May to July over Nebraska, are responsible for some of the major 

floods in the Great Plains . Flood peaks associated with these storms have a significant influence 

on the upper tail of the flood peak distribution of Nebraska (Villarini et al., 2011).  

Mesoscale convective system (MCSs) storms play an important role in Nebraska's 

climatology, and they lead to a sharp seasonal flood peak in the region during late June 

(Budikova et al., 2010; Changnon & Kunkel, 2006; Junker et al., 1999). These storms caused the 

disastrous flood in 1993 in the Midwest (Kunkel K. E., Changnon S.A., 1994), significantly 

impacting Nebraska. A similar anomalous total rainfall of 400 mm, along with high surface soil 

moisture and antecedent conditions, resulted in the flood of 2008 and massive damage (Budikova 

et al., 2010). Besides these, there is a link between the tornadic system of thunderstorms and the 

climatology of floods in the Great Plains of Nebraska (Y. Zhang et al., 2001). Zhang et al. (2001) 

showed these characteristics through a study of heavy floods in Pebble and Maple Creeks 

because of storms that occurred in late June and early August of 1996.  

Recently in 2019, the states of Nebraska, Iowa, and South Dakota witnessed a historic 

flood which was the first of its kind in many ways. Eastern Nebraska, western Iowa, and 

southeastern South Dakota got shallow temperatures and a historic high snowfall during the early 

days of 2019, resulting in a large amount of snow water equivalent of 30-100 mm by March. 
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During the same period, this region had frozen rivers and ground with 60-90 mm frost depth, 

preventing the usual infiltration. These conditions, combined with the record-breaking storm 

causing rain-on-snow events and rapid melting of snow, produced excessive runoff and 

overwhelmed the rivers and streams in the region (Flanagan et al., 2019).   

The United States Geological Survey (USGS) has characterized both the 1993 and 2008 

floods as “500-year floods” (Dirmeyer & Kinter, 2009). These floods had an enormous impact 

on the economy, health, and livelihood of Nebraska. The 1993 flood in the Midwest is regarded 

as the costliest flood during the 20th century in the entire United States (Perry, 2000). The 1993 

flood impacted the economy of the Midwest, including Nebraska. There were significant changes 

in the unemployment rate after the flood event in 1993 (Xiao et al., 2013). During this event, 

many counties had substantial damage, greater than five million in residential damage. Besides, 

the 1993 flood induced some significant interruptions in the local market, which can be linked to 

the unemployment rate during this time (Xiao et al., 2013).  

Though the 2008 flood was comparatively less disastrous than 1993 overall, it created a 

significant economic loss in the Midwest counties, which were more vulnerable in 2008. As a 

result of the 2008 flood, these counties, on average, had financial losses of more than two million 

dollars in property damage. There were eight counties in the Midwest with more than fifty 

million dollars in property damage (Xiao et al., 2013). In March 2019, quick flooding caused by 

rain-on-snow and frozen ground happened, leading to devastating losses. As of August 2019 

estimates, this flooding cost has reached more than three billion dollars. Along with that, some 

lives were lost, cattle were stranded, and significant damage occurred to infrastructures such as 

dams, levees, bridges, and roads after this extreme event (Flanagan et al., 2019).   
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Currently, the Nebraska Department of Natural Resources (NeDNR) and the US Army 

Corps of Engineers (USACE) monitor the incoming precipitations, carry out hydrological 

modeling, and examine the variations in streamflow. NeDNR provides information regarding 

present flood conditions in Nebraska through various flood maps. NeDNR’s Floodplain 

Interactive Map is an interactive interface that dispenses knowledge about floodplains and 

management. It runs with the support of resources like Federal Emergency Management Agency 

(FEMA) National Flood Hazard Layer data (NHFL), constituting the present-day flood data for 

the entire United States. Besides FEMANFHL, NeDNR utilizes the service of USGS real-time 

flows and NOAA flood stage maps to monitor flood conditions in Nebraska. NeDNR takes care 

of flood hazard mitigation in the state to reduce the risk and severity caused by flooding. Above 

mentioned services come under non-structural flood mitigation, where these agencies inform and 

change how people interact with flood-prone areas. Along with that, flood mitigations include 

structural mitigation to divert water away from areas that might cause more damage. For this, 

NeDNR, together with USACE, construct various structures such as dams and levees.   

National Water Model (NWM) forecasts streamflow around 4000 locations in the 

continental United States (CONUS) and guides millions of sites that lack traditional stream 

forecast (Office of Water Prediction, 2022). National Center for Atmospheric Research’s 

(NCAR) Weather Research and Forecasting hydrological model (WRFHYDRO) is the core 

model behind NWM (Gochis et al., 2020). Over the CONUS, the short-range streamflow 

forecasts of NWM are available every hour (Maidment & Dugger, 2016).  

Besides NeDNR, other agencies such as USACE, FEAM, Nebraska Emergency Management 

Agency (NEMA), Nebraska Department of Roads (NDOR), and National Flood Insurance 
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Program (NFIP) help in developing and interpreting flood and flood plain data as a part of their 

Floodplain Management Services.  

One of the significant drawbacks of the flood forecasting systems of the agencies 

mentioned above is that they have a more extended delay in the forecast. This often causes a 

shorter lead time in giving flood warnings to the community. Also, most of these flood 

forecasting systems operate on a continental scale, where the underlying rainfall-runoff models 

generally work with a larger spatial resolution. This factor can compromise the accuracy of flood 

prediction locally. Besides, most of the underlying models of these systems do not consider snow 

processes, while the runoff generation in Midwestern basins is highly affected by snow 

accumulation. This often leads to an inaccurate flood prediction.   

Flood monitoring with hydrological modeling and forecasting is a pivotal research area in 

Hydrology and Water Resource Engineering. Across the world, numerous hydrological models 

have been developed and applied at an operational level for flood forecasting. These models 

include data-driven models, lumped models, distributed conceptual models, and physically based 

models. All these models are regularly studied and improved for better realization of flood 

events.   

Data-driven models, leveraging machine learning and statistical approaches, try to 

generate streamflow forecasts from different variables based on their statistical relationship. 

These predictor variables often include precipitation, temperature, potential evapotranspiration, 

humidity, pressure, windspeed, etc., but it is not necessary to have more predictor variables all 

the time. The advantages of data-driven models are that they are easy to set up and have 

minimum requirements for input data. Besides that, these models often produce excellent 

streamflow estimates and outperform other conceptual or physically based models (Piotrowski et 
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al., 2006; Sahoo & Ray, 2006).  Many of the earlier hydrological models were conceptual 

hydrological models. These models conceptualize the watershed as different storage layers and 

estimate the water flow through each layer, keeping the water balance consistent. Leaky bucket 

models are classic examples of conceptual models. These models come in lumped and 

distributed manners. These conceptual models must be calibrated with existing data to find the 

best parameters for each basin. Physically based models try to represent the actual physical 

processes in a watershed with existing parameterizations. Noah-MP (Niu et al., 2011) is a 

popular physically based model widely used in hydrology research. One of the significant 

disadvantages of conceptual and physically based models is their data requirements. They vary 

based on the complexity of these models. Hydrologists often have difficulty finding all the 

required data to run these models.   

There exist several state-of-the-art flood forecasting systems around the world. Table 1.1 

provides details of some well-known operational flood forecasting systems. The details are taken 

from (Emerton et al., 2016) and (Kauffeldt et al., 2016).  
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Table 1.1 Operational large-scale flood forecasting systems 

Forecasting 
System  

Domain  Forecast 
Frequency  

Rainfall Runoff 
Model  

Spatial 
Resolution  

EFAS (European 
Flood Awareness 
System)  

Europe  12-h  Lisflood Europe  5 km, Regular 
grid  

E-HYPE (European 
Hydrological 
Predictions for the 
Environment)  

Europe  Daily  
  

HYPE  ~15 km, 
Irregular grid,  
varies by Basin  

FFWS (Flood 
Forecasting 
&Warning Service)  

Australia  6–12-h  GR4J (daily), 
GR4H  
(hourly), URBS  

~10 km  

HEFS (Hydrologic 
Ensemble Forecast 
Service)  

USA  Sub-daily to 
daily  

Suite of Models  Varies by Basin  

GloFAS (Global 
Flood Awareness 
System)  

Global   Daily  HTESSEL  10 km, Regular 
grid  

GLOFFIS (Global 
Flood Forecasting 
Information 
System)  

Global  6-h  PCR-GLOBWB, 
W3RA  

10 km, 50 km, 
Regular grid  

VIC with Global 
Flood Monitoring 
System (GFMS)    

Global  3-h  Dominant river 
tracing Routing 
Integrated with 
VIC 
Environment 
(DRIVE) model  

~12km  

NWM (National 
Water Model) - 
Experimental  

USA  1-h  Weather 
Research 
Forecasting 
Hydro (WRF-
Hydro)  

1km and 250m 
grids  

 

Iowa Flood Information System (IFIS) is a web platform that provides facts and figures 

of real-time flood conditions, flood-related data, visualizations, flood forecasts, etc., for more 
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than a thousand communities in Iowa (Krajewski et al., 2017). IFIS is developed and maintained 

by the Iowa Flood Center (IFC) at the University of Iowa. IFIS's operation is supported by a 

conceptual rainfall-runoff model called Hillslope Link Model (HLM). This model consists of 

multiple Ordinary Differential Equations (ODEs) in a tree-structured format, representing the 

water flow and balance in each hillslope (Small et al., 2013). To solve these tree-structured 

ODEs, we use the Asynch solver.   

A critical strength of the IFIS system is the lead time in flood forecasting. IFIS calculates 

rainfall accumulations products at 5-min, daily, and two-week intervals (Krajewski et al., 2017). 

This enables IFIS to deliver flood information and alerts almost instantly. Compared to many 

other operational real-time flood forecasting systems, this is a remarkable feature, as given in 

table 1.1.   

Presently, the HLM does not incorporate any snow processes in its system. Though we 

can provide SWE as an external variable, HLM does not have any parameterizations to estimate 

SWE, snowmelt, or frozen ground. This absence of snow parameterization is speculated as the 

main reason for IFIS’s failure in the prediction of the historic spring flood that occurred in 2019 

across the states of Iowa, Nebraska, and South Dakota. This led to a failure of delivering an early 

alert to the communities. Snow has a substantial role in the hydrology of catchments in the 

Midwest. This region receives significant snow during winter. Snow accumulation Field heavily 

affects runoff generation in the Midwest (Suriano, 2022). Therefore, incorporating snow 

processes in flood prediction models in the Midwestern region, including Nebraska, is crucial.   

Through this work, we are trying to improve the Hillslope Link Model by introducing 

snow processes in the model structure. We modified the existing design by adding a new storage 

layer holding snow water equivalent (SWE). This new parameterization encompasses a simple 



8 

 

degree day factor model (Martinec, 1975) for estimating meltwater. We introduced different 

rain-snow portioning schemes into the system and evaluated the performance of HLM. We also 

refined the present parameterizations to account for the occurrence of frozen ground and its 

effect in assessing streamflow. After successfully testing the parameterization, we implemented 

the upgraded model for a pilot basin in Nebraska to show the potential of an operational flood 

forecasting system for the state. To support our case, similar to the Iowa Flood Center, we 

installed streamflow gauging stations across the pilot basin where we can collect data and 

assimilate it into the model. We also developed a simple web interface showing the simulated 

hydrograph anywhere in the basin. 
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Chapter 2 Materials and Methods 

2.1 Data 

2.1.1 NLDAS-2 

For the preliminary validation of the proposed parameterization of the snow process, 

which is newly added to the Hillslope Link Model (HLM) structure, we used North American 

Land Data Assimilation System (NLDAS-2) precipitation and temperature forcing. NLDAS is a 

multi-institutional partnership project created to develop land-surface model datasets with quality 

control consistent across space and time from observations and reanalysis (Mitchell et al., 2004). 

NLDAS data consists of hourly surface forcing in a gridded format with a spatial resolution of 

0.125 ° x 0.125 °. NLDAS-2 is an improved version of NLDAS that determines and improves 

existing errors in forcing data and models (Xia et al., 2012). These improvements include 

changes in forcing data sources and their inherent biases, upgrading the model and recalibrating 

its parameters, and an increased period of forcing data and simulations (Xia et al., 2012). 

NLDAS-2 data provides thirteen forcing variables, including precipitation, temperature, radiation 

fluxes, potential evapotranspiration, pressure, specific humidity, and ground wind speeds. For 

this study, we use precipitation and temperature data from 2015 to 2020. Data is obtained for the 

entirety of Nebraska and then extracted for two specific locations. While the temporal resolution 

of data is hourly, it is later aggregated into a daily resolution for running the prototype model.   

2.1.2 NSIDC  

To validate the proposed snow parameterization, we acquired SWE data from “Daily 4 

km Gridded SWE and Snow Depth from Assimilated In-Situ and Modeled Data over the 

Conterminous US, Version 1” (Broxton et al., 2019; Zeng et al., 2018) from the National Snow 

and Ice Data Center (NSIDC). This data provides daily SWE and snow depth information at a 
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spatial resolution of 4km x 4km for the conterminous United States (CONUS). The SWE data 

collected is for the same period as the simulation (2015-2020) and re-gridded through linear 

interpolation to match the resolution of NLDAS-2 forcing data.   

2.1.3 MRMS-QPE 

We used Multi-Radar Multi-Sensor Quantitative Precipitation Estimate (MRMS-QPE) of 

the HLM model for precipitation forcing. MRMS-QPE is a completely systematized dataset that 

combines information from multiple sensors and radars, numerical weather prediction (NWP) 

models, surface and satellite observations, and precipitation climatology across the nation to 

integrate into a gridded dataset of high spatial and temporal resolution. MRMS-QPE products 

have an update cycle of as low as two minutes and a latency of around 1.5 hours, making them 

suitable for operational flood forecasting systems (J. Zhang et al., 2016). The MRMS system 

incorporates data from about 180 radars and almost 7000 rain gauges at an hourly scale to correct 

the biases in radar data. Many operational flood forecasting systems in the eastern US utilizes 

MRMS-QPE products to monitor flood conditions (J. Zhang et al., 2016). 

2.1.4 USGS 

We used the observed data obtained from USGS stations to evaluate the model 

performance. There are eight USGS stations in the Elkhorn River basin for which we had hourly 

discharge data. Although there is a gap in many of the discharge data during the winter period, 

these were filled with estimated values by USGS. We also used the USGS observed data to 

update the river stages in our retrospective flood forecasting model for 2019.  

2.1.5 IFC Sensors 

The Iowa Flood Center has advanced streamflow gauging sensors, which automatically 

collect the stream level data and transfer it to the Iowa Flood Information System (IFIS) every 15 
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minutes. These sensors, mounted to the bridge side, emit sonar signals toward the stream and 

measure the distance from the sensor to the water level. From this information, we can measure 

the river stage, and with the help of the rating curve, we can estimate flow at these locations. 

This data can be later assimilated into the flood modeling system to correct the river stages. We 

installed eight sensors across the Elkhorn River basin, which were already functional. Figure 2.1 

shows the locations of installed sensors across the Elkhorn River basin. These locations were 

decided based on field visits and GIS analysis, where we tried to cover streams of different 

orders. 

 

  
Figure 2.1 Sensor installation locations 

 

Table 2.1 List of datasets used 

Variable  Dataset  Resolution  Time period  Citation  
Precipitation  MRMS  1 km x 1 km  2018-19, Hourly  J. Zhang et al., 

2016  
Temperature  NLDAS 2  0.125 ° x 0.125 °  2018-19, Hourly  Xia et al., 2012  
SWE  NSIDC  4 km x 4 km  2018-19, Hourly  Broxton et al., 

2019  
Streamflow  USGS  Point data  2018-19, Hourly  USGS  
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2.2 IFIS System 

After the disastrous flood of 2008, the Iowa Flood Center (IFC) was established with one 

primary aim being to develop hydrologic models and real-time flood forecasting tools for better 

predictions and information about floods (Krajewski et al., 2017). IFC developed a high-

resolution streamflow forecasting system for the state of Iowa that works based on the Hillslope 

Link Model (HLM) and can make predictions every fifteen minutes for nearly 2000 locations 

(Krajewski et al., 2017). Later, IFC developed the Iowa Flood Information System (IFIS), a web-

based platform to provide real-time flood information to the communities of Iowa. IFIS provides 

services that include flood inundation maps, real-time flood conditions, flood forecasts, flood-

related data, applications, information, and visualizations (Demir & Krajewski, 2013).   

The current operational real-time flood monitoring system relies on the Hillslope Link 

Model (HLM; Figure 2.2; Table 2.2). This conceptual model employs the quintessential leaky 

bucket perception of a watershed. HLM divides the entire watershed into a large number of 

individual hillslopes. Each hillslope has multiple water storage layers where water from each 

layer flows to the subsequent layer below as well as to the stream, based on parameterizations 

relevant to the processes. A schematic representation of this parameterization (HLM-NoSnow) is 

given in Figure 2.3a. Equations 2.1, 2.2 and 2.3 represent a change of storage with respect to 

time in each layer of a hillslope. These hillslopes are connected in a tree-structured format where 

water from each hillslope combines and contributes to the streamflow. This results in a massive 

system of ODEs linked as a tree structure. Solving this system of ODEs provides outputs of 

desired variables such as streamflow.   
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 𝑑𝑑𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑃𝑃(𝑡𝑡)− 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑒𝑒𝑝𝑝        (2.1) 
 𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑇𝑇𝑇𝑇 − 𝑒𝑒𝑠𝑠         (2.2) 

 
𝑑𝑑𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑇𝑇𝑇𝑇 − 𝑞𝑞𝑠𝑠𝑠𝑠 − 𝑒𝑒𝑠𝑠         (2.3) 

 

  

Figure 2.2 Schematic figure of HLM 

 

Table 2.2 Parameters in HLM 

 Variable  Name 
 P    Precipitation 
 Sp    Storage in the first layer 
 Sl    Storage in the second layer 
 Ss    Storage in the third layer 
 e    Evapotranspiration 
 Tl    Size of top layer storage 
 A    Sum of the areas for all upstream links 
 L    Length of link i 
 Vo    Reference flow velocity 
 λ1    Exponent for flow velocity discharge  
 λ2   Exponent for flow velocity upstream area 
 q    Discharge 
 K2, Kdry, K3   Constants 
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Figure 2.3 Schematic representation of different models 

 

2.3 Improvements to the HLM Model 

HLM-PSnow is an updated conceptual model structure for HLM that includes snow 

processes. In this upgrade, there are two major components added to the system: 1) rain-snow 

partitioning (RSP) schemes and 2) a new storage layer of snow water equivalent (Figure 2.4).   

2.3.1 Rain-Snow Partitioning 

This model adds the option of using different rain-snow partitioning of the incoming 

precipitation. This precipitation provided as forcing is divided into snow and rainfall based on 

three different RSP schemes (shown in Figure. 2.5). The first RSP scheme is premised on a base 

temperature (Tb). If the temperature exceeds Tb, all precipitation is considered rainfall and, 

otherwise, snow. The base temperature (Tb) should be calibrated to find the optimum 

performance. The second RSP scheme is characterized by representing snow fraction (fraction of 

snow in the incoming total precipitation) as a linear stepwise function of the air temperature 

(Jordan, 1991). The third RSP scheme is based on that proposed by Wang et al. (2019), where 

snow fraction is obtained following a sigmoid function of wet bulb temperature. In this scheme, 
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the parsimony of the model is compromised compared to earlier versions, as the implementation 

of this scheme requires an additional input of relative humidity.   

2.3.2 Parameterizing Snow Accumulation  

The new storage layer (Ssnow) is conceptually located above the ponding layer (Sp) in 

the earlier version of HLM (HLM-NoSnow). This new layer stores the accumulated snow, and 

the change in Snow Water Equivalent (SWE) with respect to time is given as the incoming snow 

subtracted by outgoing melt water and snow evaporation, as represented using equation 2.4. The 

amount of meltwater is calculated using a simple degree day factor (DDF) model (Martinec, 

1975) as described in equation 2.5, where D is the degree day factor. The amount of meltwater 

cannot be greater than the existing SWE. Therefore, the minimum of meltwater and SWE is 

taken. After portioning the total precipitation into rainfall (Prain) and snow (Psnow), the amount 

of snow is added to this layer, and rain is directly entered into the ponding layer. That means, 

instead of the precipitation term in the current version of HLM, it is replaced by just the rainfall 

share from rain-snow partitioning. Also, the ponding layer will have an additional meltwater 

component from the snow accumulation layer above it. As a result, the equation representing the 

ponding layer looks like equation 2.6. For subsequent layers, there are no changes. Therefore, the 

equations remain the same as that of the earlier version.  

With the new snow layer implementation, the Hillslope Link Model can now simulate 

SWE as a new output variable, which can be used to further study the role of snow in the 

hydrology and water resources of the region. A previous update in the HLM considered 

including SWE as an external forcing (HLM-FSnow).  

 

 
𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 −  𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (2.4) 
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 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 = min(𝐷𝐷 ⋅ 𝑇𝑇(𝑡𝑡), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)      (2.5) 
 

 𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 − 𝑒𝑒𝑝𝑝    (2.6) 
  

  
Figure 2.4 Schematic diagram of adding snow parametrization 
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Figure 2.5 Rain Snow Partitioning (RSP) schemes used in the new modeling framework 

 

2.3.3 Initial Validation of New Parameterization 

To validate the above-proposed improvements to the current structure of the Hillslope 

Link Model, we developed a prototype system of new ODEs in MATLAB. This prototype code 

represents the vertical water flow in a single hillslope. By solving this system of ODEs using the 

ode45 solver from MATLAB, we could obtain preliminary results of patterns of water in each 

storage layer, including the snow-water equivalent from the newly added layer.  

2.4 Implementation of the Improved Prototype  

Figure 2.6 shows the steps in the implementation of the improved prototype. 
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Figure 2.6 Flow chart showing the implementation of the Prototype flood forecasting system 

 

2.4.1 Implementation in UNL HPC 

In this study, we found that the absence of snow processes in the modeling framework 

shortens the ability of HLM to predict streamflow efficiently, especially in the Midwest where 

snow plays a vital role in the water cycle. We introduced a new simple parameterization, as 

discussed in section 2.3. Initially, we tested this new set of ODEs using MATLAB ODE solvers. 

Once tested successfully, we updated the model source code by adding this improved HLM 

structure as a new model inside the numerical solver toolbox for HLM differential equations. 

Additional forcing of temperature can be provided in the format of regular storm files, binary 
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storm files, or uniform storm files. When the updated source code was ready, we set up and 

compiled these source codes in Crane, a High-Performance Computer in the Holland Computing 

Center at the University of Nebraska-Lincoln. The required forcings are made available in Crane. 

Precipitation files are stored in binary format, whereas temperature recordings are aggregated for 

the basin and provided through uniform storm (.ustr) files. Then we manually tuned the 

parameters to obtain the realistic runoff from the model and compared them with observed 

USGS discharge measurements. We ran the model for 2018 with calibrated parameters to be 

used as the initial condition for the 2019 simulation. Running the simulation by separating 

different batches of time would save a significant amount of time as it avoids running dry 

hillslopes.  

2.4.2 PostgreSQL Database 

Next, we created a PostgreSQL (Stonebraker & Rowe, 1986) database to insert observed 

discharge measurements from USGS stations and the newly installed sensors. This database 

updated the model-simulated river stages with observations.   

2.4.3 Rating Curve Development 

The Iowa Flood Center (IFC) developed and installed eight Bridge-Mounted River Stage 

Sensors (BMRSS) in different locations of the Elkhorn River basin (section 2.1). These sensors 

can measure the water level elevation of the river in these locations. To convert these into 

streamflow data, we used rating curves. The IFC developed one-dimensional (1D) hydraulic 

models for every location where sensors were installed to obtain a stage discharge relationship. 

The IFC developed a methodology to obtain a stage-discharge relationship using the step 

backwater model from the Hydrologic Engineer Center’s River Analysis System (HECRAS) 

(Quintero et al., 2021). Rating curves are subject to multiple sources of uncertainty. In particular, 
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synthetic curves developed with hydraulic models are sensitive to the characterization of the 

channel geometry (e.g., the number of cross sections and the spacing between them, bottom 

slope, and discretization of the finite-element mesh,, among others) as well as model parameters 

(e.g., Manning’s roughness coefficient) of the channel. The uncertainty for Manning’s roughness 

coefficient is not available because this parameter is not directly measured but assessed through 

visual comparison of previous studies (Arcement & Schneider, 1984). Despite extensive efforts 

to determine channel roughness, its estimation continues to be subjective and can lead, even for 

common situations, to errors as high as 30% (Bray, 1979).  

IFC creates an ensemble of rating curves to account for the uncertainty of channel 

roughness and energy surface slope. A set of 100 combinations for slope and Manning’s values 

sampled uniformly over their feasible ranges was selected. Each set of combinations gives a 

different rating curve. The resulting ensemble of equally likely rating curves can be described 

using quantiles that represent uncertainty through the range of variation of discharge and stage. 

The representation of ratings is presented in the form of the 50% (median), 5%, and 95% 

quantiles.  

Topographic and hydrologic information was provided by the Nebraska Department of 

Transportation (NDOT). Figure 2.7 shows, in green, the cross sections surveyed for each site, 

and table 2.3 shows the hydrologic data used to set up a steady flow model. Downstream 

boundary conditions were based on a normal depth assumption using an energy surface slope 

estimated from the bottom of the channel profile captured in the survey data near the 

downstream study limit. The Manning’s coefficient range was set to between 0.03 and 0.045, 

which is used in the channel sections of the step-backwater HEC-RAS model. The selected range 

is supported by the experience of previous projects and the literature (Barnes, 1969; Gilles et al., 
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2012; Quintero et al., 2021). For the floodplain, we used the Nebraska land use data map - 2015 

produced by the Nebraska Department of Natural Resources (NeDNR, 2022) to assign roughness 

values that were selected based on typical values provided by the HEC-RAS Hydraulic 

Reference Manual Version 4.1 (Chow, 1959; French, 1985; US Army Corps of Engineers, 2010) 

(fig. 2.8). 
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Figure 2.7 Arial view of sensor installation sites and cross sections surveyed for rating curve 

development. 
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Table 2.3 Design Discharge (cfs) 

Site  Equation  Q2  Q10  Q25  Q50  Q100  Q500  
S020 27627  Beckman  411  1,350  2,201  3,121  4,268  7,682  
S020 31087  Drainage Area 

Comparison  
2,179  6,848  9,961  12,607  15,565  23,347  

S020 36393  Strahm/Admiraal  1,454  4,148  6,292  8,496  10,622  17,213  
S032 03971  Cordes/Hotchkiss  1,680  6,754  N/A  16,093  21,987  42,516  
S275 13258  USACE Hydrologic 

Study  
5,200  19,500  30,100  44,100  49,400  78,500  

S275 07714  Strahm/Admiraal  3,637  9,499  13,874  18,287  22,293  33,879  
S275 02146  Strahm/Admiraal  1,000  3,000  4,800  6,750  8,800  15,700  
S079 05122  Strahm/Admiraal  3,807  9,810  14,407  19,095  23,534  36,599  
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Figure 2.8 Land Use Map – Floodplain Manning’s roughness values. 
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2.4.4 Setting Up the Forcing Files 

We downloaded the MRMS data from archives of Iowa Environmental MESONET of 

Iowa State University. These files were initially in gridded format, which we later cropped for 

the Elkhorn region and converted to binary file format in the Holland Computing Center HPC. 

These binary files are the fastest way for the model to read the forcing data. Since the intention is 

to show the potential of a flood forecasting system for Nebraska through a retrospective analysis, 

we forced the model for a time period of 2018 and 2019. Within this, 2018 is considered a spin-

up time for the model. A PostgreSQL database consisted of observed streamflow measurements 

from USGS, from which the model streamflow stages were regularly updated. This process 

automatically replaces the model-produced values with observed values at these locations.   

2.4.5 ASYNCH Solver 

The Hillslope Link Model works based on a system of ordinary differential equations 

arranged in a tree topology structure, as discussed in section 2.2. The computation of solutions 

for this system of ODEs is achieved using the asynchronous (ASYNCH) software package 

created by Iowa Flood Center (IFC) (Small et al., 2013). The primary application of ASYNCH 

solvers is finding solutions for distributed hydrologic models of catchments. ASYNCH uses 

dense output Runge-Kutta methods to solve the equations at each hillslope. The input forcing, 

such as precipitation, evapotranspiration, and temperature, can be transferred through several file 

formats as well as taken from a Structured Query Language (SQL) database. Similarly, outputs 

can be produced and displayed in different formats to use them for studies.  
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2.4.6 Web Interface 

In the present world, web interfaces are the most viable way of providing information to 

the public. We developed a simple web interface that shows the stream network map of the 

Elkhorn basin where the user can click anywhere, and the hydrograph at that location will be 

displayed. This web interface is developed using python with dash and plotly libraries (Plotly 

Technologies Inc., 2015). Figure 2.9 shows the screenshot of the web interface. It is essential to 

note that this interface is a part of our prototype flood forecasting system and a preliminary 

version to set the ground for improvisation.   

 

  
Figure 2.9 Screenshot of web interface for flow stages across the Elkhorn basin. 

 

2.5 Bridge Vulnerability  

For the eight newly installed sensor locations, we estimated the vulnerability of bridges to 

flood peril. Two critical factors on which the bridge vulnerability depends are the time-to-peak at 

these locations and the elevation of bridges from the bottom of the river. The higher the time-to-

peak, the lower the vulnerability, and the higher the elevation of bridges, the lower the 

vulnerability. The time-to-peak values are calculated by ingesting the model with an arbitrary 



27 

 

constant rainfall across the basin. This was realized with uniform storm files (.ustr) forcing in 

HLM. Then we obtained the streamflow at these locations produced by the model and the time 

difference between the peak flow and centroid of the storm, which gives time-to-peak. The 

elevation of bridges from the bottom of the river was already measured during their installation. 

Once these two quantities were obtained, simply plotting one across another would give a sense 

of the vulnerability of bridges to flood peril. 
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Chapter 3 Results 

3.1 Initial Tests 

From the prototype system of ODEs created in MATLAB for initial validation, with an 

additional storage layer for snow, we obtained the simulated SWE. Figure 3.1 shows the 

comparison of simulated SWE with that of observed values from NSIDC data. We compared this 

for two different locations in Nebraska. Initial results were satisfactory, as the output from the 

new storage layer could pick up the SWE patterns well. Figure 3.1b shows that the model 

produced similar values for the Norfolk region in 2019 and 2020. However, since these were 

preliminary results from a single grid data, it does not represent the connection between different 

hillslopes as in HLM.   

 

  
Figure 3.1  Comparison of SWE output from prototype system of HLM ordinary differential 

equations. a) grid near Kearney and b) grid near Norfolk. 



29 

 

 

Figure 3.2 Cumulative Probability of SWE 

 

3.2 Retrospective Flood Forecasting 

We simulated the hydrographs for 2019, as the historic flood during March was our point 

of interest (Flanagan et al., 2019), using the Hillslope Link Model and a new version of the 

model that includes the snow parameterization. We compared both hydrographs with the 

observed hydrographs at five locations across the Elkhorn basin. The results suggest that the 

HLM with snow parameterization outperforms the current version of HLM in predicting the peak 

flow in the Midwest during March 2019. Figure 3.3 shows that the HLM without snow could not 

capture the peak flow at any stations. In contrast, the hydrographs from the model with snow 

parameterization show peaks corresponding to observed peaks. This implies that snow processes 

majorly drove the flooding in March 2019.  
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Figure 3.3 Simulated hydrographs from HLM with and without snow. The forcings used are on 
the top left. The scatter plot comparing observed and simulated discharges is on the right. 

 

  

Figure 3.4 State variables in one of the link in HLM setup for Elkhorn 
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Figure 3.5 Simulated hydrographs at locations after assimilating discharge measurements. 

 

  
Figure 3.6 HLM flow simulations (color lines) and USGS gauges flow observations (black dots) 

during the flood of March 2019. Blue lines correspond to HLM-no-snow, yellow to HLM-F-
snow and red to HLM-Snow. 
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3.3 Bridge Vulnerability 

Figure 3.7 shows the plot between Time to peak and Bridge elevation, illustrating the 

different exposure levels of eight bridges across the Elkhorn River basin. The higher the time-to-

peak, the lower the vulnerability, and the higher the elevation of bridges, the lower the 

vulnerability. Therefore, the vulnerability increases as we move closer to the plot's origin. 

Results showed the bridge near Stuart, NE, is the most vulnerable to flood disasters, whereas the 

bridge near Norfolk, NE, is the least vulnerable.   

 

  

Figure 3.7 Different exposure levels of the eight bridges across the Elkhorn basin. The larger the 
circle, the large the vulnerability of the bridge. 
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3.4 Rating Curves  

Figure 3.8 shows the results of synthetic rating curves obtained with the hydraulic model 

for each site, the solid black line and the gray area around it show the median and the 5% and 

95% quantiles of the uncertainty range based on the 100 rating curves using the model.  
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Figure 3.8 Synthetic Rating Curves 
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Chapter 4 Discussion  

This study has investigated the potential of a real-time flood forecasting system for 

Elkhorn, a pilot basin in Nebraska. We found that improving HLM with snow parameterization 

would be a good candidate. We have implemented the asynch solver along with HLM source 

codes in the University of Nebraska-Lincoln’s high-performance computer. While this can serve 

as a hydrological model to simulate river discharge, it requires further work to apply as an 

operational real-time flood forecasting system.  

Firstly, an operational flood forecasting system should include collecting and inputting 

the most recent forcing data (such as precipitation and temperature depending on the model 

used), the ability to model across the basin, combining the observed discharge data from the 

sensors, and updating a user interface to disseminate the flood information to the people in need 

in a timely manner. The most critical and challenging task is to make all these components 

simultaneously run smoothly and seamlessly in an automatic manner.  

Secondly, the model should integrate real-time forcing data with a minimum possible lag 

time. Many possible datasets could be utilized, such as Multi-Radar/Multi-Sensor Quantitative 

Precipitation Estimation (MRMS-QPE) rainfall products with lower latency. Lower latency 

means we can predict an imminent flood earlier, which helps deliver an efficient, early warning.  

Establishing an operational flood forecasting system comes with multiple challenges, one 

being the efficient integration of all components in the flood forecasting system. This involves 

running the model, collecting and assimilating data, and circulating the information. For such a 

task to accomplish, we need more experts from the fields of hydrology, water resource 

engineering, and computer science working together. While hydrologists and water resource 

engineers work on the modeling and conceptual sides of the system, computer scientists are 
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necessary to aid them in terms of data management, utilizing high-performance computing 

resources and web interfaces. In Nebraska, the Holland Computing Center (HCC) at the 

University of Nebraska-Lincoln can greatly assist a future full-fledged flood forecasting system.  

Another big challenge in realizing an operational flood forecasting system is calibrating 

the model for all basins in the state. The Hillslope Link Model currently does not have an 

automatic calibrating system. To calibrate the model, we have to identify sensitive parameters 

based on experience in model runs and manually tune the parameters to give the best results. 

This process is supported by knowledge about the catchment properties. Manually calibrating the 

model is often tedious because it involves several trial-and-error simulations, as there can be 

many combinations with few sensitive parameters. One solution to this problem is to structure an 

automatic calibration framework for HLM. There are multiple methods available in the literature 

for automatic model calibration. For example, the Shuffle Complex Evolution (Vrugt et al., 

2003) algorithm has been successfully integrated with the HYMOD2 (Roy et al., 2017) model. 

Combining such a framework with HLM itself would comprise a separate project.  

In addition to the abovementioned challenges, we must continuously monitor an 

operational flood forecasting system to maintain efficiency. Some of the undertakings necessary 

to achieve this are 1) we have to frequently examine the functioning of sensors, 2) data 

management: check and filter the data coming into the model, 3) Bug identification and fixes in 

the model source code, and 4) Upkeeping the web interface. A dedicated team of experts is 

essential to accomplish these tasks.  

Besides the above-stated future goals, we also need to develop a system that translates the 

river stages obtained from model simulations to estimated and extended flood depths. We could 

think of a python library that includes all the necessary functions for information extraction. 
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Iowa Flood Center currently has a similar library developed by them. This would help with 

keeping efficient communication with the public by including all necessary information about 

the flood.    
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Chapter 5 Conclusions   

This article presents the methodology we followed to implement a flood forecasting 

system prototype for a pilot basin in Nebraska. We discuss the IFIS system and our 

improvements to its underlying hydrological model (HLM) to include snow processes. We 

discuss the opportunities and challenges in developing a full-fledged operational flood 

forecasting platform. Besides, we analyze the vulnerability of eight bridges to flood peril based 

on a methodology that can be expanded to other bridges. 

Our results substantiate the fact that incorporating snow processes is crucial for flood 

forecasting in cold regions (e.g., Nebraska, in this case). This was evident in the simulation of 

the 2019 Spring flood, where accounting for snow processes improved the simulation of the peak 

flow. More specifically, the addition of our proposed snow parameterizations to the HLM 

showed significant improvement in predicting the 2019 March flood in the Elkhorn River basin 

as compared to the version of the model without snow parameterizations. Furthermore, our 

results also show that oftentimes simple improvements to the model structure can significantly 

improve the accuracy of a model, which is also supported by the literature (Mai et al., 2022; Roy 

et al., 2017a). From a modeling perspective, HLM appears to be a strong candidate for the 

operational implementation of a flood monitoring and forecasting platform in the state of 

Nebraska. Findings from this work strongly support the idea of a statewide expansion of the 

platform and the development of an operational flood information system targeting community 

welfare and engagement. A platform like this will also provide policymakers with accurate 

information and gainful facts about flooding in a timely manner, thereby enabling more informed 

decision-making. 
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Chapter 6 Disseminations  

Peer-reviewed Journals 

• Rasiya Koya, S., Velasquez, N., Mantilla, R. I., Rojas, M., Harvey, K., Ceynar, D., 

Krajewski, W. F., & Roy, T. (2022) . A Prototype Flood Forecasting System for 

Nebraska Watersheds. Environmental Modelling & Software (under review). 

• Velasquez, N., Quintero, F., Rasiya Koya, S., Roy, T. & Mantilla, R. I., (2022) . 

Application of HLM-Snow to assess the flood of spring 2019 in Western Iowa. Journal 

of Hydrology: Regional Studies (under review). 

Conference Presentations 

• Rasiya Koya, S., N. V. Giron, R. Mantilla, M. Rojas, K. Harvey, D. Ceynar, W. F. 

Krajewski, and T. Roy (2021), Development of a Flood Monitoring System Prototype for 

a Pilot Basin in Nebraska, AGU Fall Meeting, Dec 13-17, New Orleans. 

• Rasiya Koya, S. and T. Roy (2022), Incorporating Snow Processes in the Iowa Flood 

Information System (IFIS) and Evaluating its Applicability to Nebraska, Student 

Research Days, UNL, Lincoln. 

Seminar Presentations 

• Rasiya Koya, S. (2022), Flood Prediction in Nebraska: Comparison of Machine Learning 

Models and Conceptual Hydrological Model, UNL Graduate Student Symposium, Feb 25, 

Lincoln. 

• Rasiya Koya, S. (2022, March 4). Research Towards an Integrated Flood Information 

System for Nebraska [PowerPoint slides]. Environmental and Water Resources 

Engineering Seminar Series, University of Nebraska-Lincoln. 
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