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 Abstract 

 This report explores the deployment of Telehealth Kiosks (TKBs) as a pivotal strategy to 

improve healthcare access and equity in rural areas. Leveraging case studies from rural Missouri, 

the research employs a comprehensive approach that combines empirical data, travel behavior 

analysis, and advanced modeling techniques. Travel time decay functions, calibrated using data 

from US adults, were integrated into both continuous approximation and discrete optimization 

models to guide the strategic placement of TKBs. The study examines key trade-offs between 

equity and efficiency, demonstrating how adaptive deployment strategies can address the unique 

challenges faced by underserved populations. Insights from the analysis highlight the critical role 

of equity thresholds, resource availability, and demographic factors in shaping optimal TKB 

networks, ensuring that the needs of vulnerable groups such as children and seniors are met 

while maximizing system-wide coverage and efficiency. 

The findings underscore the potential of TKBs to transform rural healthcare delivery 

systems by reducing travel times, addressing demographic disparities, and complementing 

existing healthcare infrastructure. Case studies reveal significant benefits, such as travel time 

reductions and improved healthcare accessibility for large portions of rural populations. The 

report offers actionable recommendations for policymakers, including the use of dynamic equity 

metrics, investments in scalable solutions like mobile TKBs, and the integration of emerging 

technologies such as drones and AI to enhance service delivery. By bridging empirical insights 

with practical applications, this research provides a robust framework for designing equitable 

and efficient healthcare systems in rural regions, paving the way for innovative and inclusive 

solutions to healthcare access challenges. 
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Chapter 1 Introduction 

Emerging technologies are revolutionizing healthcare delivery by enhancing access and 

equity, particularly in rural areas. Similar to how omnichannel retail provides customers with 

multiple ways to access products, omnichannel healthcare aims to deliver care through the most 

appropriate channel (physical or virtual), at the right location, time, and cost. This approach is 

crucial in rural regions, where significant challenges include long travel times and distances, a 

shortage of healthcare providers and facilities, and unique health needs of rural populations. 

This research investigates the deployment of freestanding telehealth kiosks/booths 

(TKBs) in rural areas to improve healthcare access. A TKB is a publicly accessible automated 

facility offering various health services, such as providing health information, collecting clinical 

measurements, telemonitoring, teleconsultations (real-time communication with health 

professionals), dispensing tests, reporting test results, and even dispensing medication (Maramba 

et al., 2022; Zanjani et al., 2020; Letafat-nejad et al., 2020). Figure 1.1 illustrates two examples 

of TKBs. These kiosks can function with or without live synchronous staffing for 

teleconsultations and may also serve as sites for periodic in-person visits by health professionals. 

The market for TKBs is projected to exceed $4 billion globally by 2034 (KioskMarketplace, 

2024).  

TKBs are available in many different configurations with different functionalities, but in 

general a TKB can be defined as a self-contained healthcare unit equipped with digital and 

medical technology to facilitate remote clinical services. Features of a TKB generally include 

hardware/equipment (e.g., video monitor, video cameras, blood pressure monitor, thermometer, 

scale, stadiometer, pulse oximeter, glucometer, EKG/ECG, stethoscope, otoscope, dermascope, 

spirometer, high resolution cameras, etc.), software to manage the patient interface and ensure 
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data security, and security and cleaning. TKBs can offer a wide range of healthcare services in 

the areas of: (i) diagnosis (e.g., consultation for respiratory symptoms, wounds, earaches, nausea, 

etc.), (ii) screening (e.g., blood pressure, glucose levels, mammograms), (iii) preventive care 

(e.g., health education, vaccination information, vaccine dispensing), and (iv) treatment (e.g., 

prescription management, mental health support, etc.). The services may be fully or partially 

automated, or augmented by on-site staff. Note that TKBs can also be mobile facilities that are 

easily repositioned. Thus, TKBs effectively allow self-service healthcare using technology to 

connect with remote resources and medical staff synchronously or asynchronously. This may 

help overcome the lack of providers and the challenges and limitations of telehealth from the 

home. 

 

Figure 1.1 Examples of TKBs. Left image: “The OnMed kiosk offers an exam room and 
technologies such as soundproofing; ultraviolet lighting to keep air and surfaces clean; thermal 

imaging and an automated pharmacy.” from Maras (2020). Right image from Gupta (2022). 

 

This research builds on existing advancements to investigate the optimized placement 

and integration of TKBs, with a particular focus on rural regions where challenges such as travel 
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time decay, spatial equity, and healthcare access disparities are most pronounced. While other 

critical aspects of TKB deployment—such as legal, privacy, insurance, and cost considerations—

are important, this study centers on the transportation and locational dimensions of implementing 

a TKB network and its impact on improving healthcare accessibility. 

The research has two primary dimensions: empirical and analytical. The empirical phase 

incorporates both primary and secondary data collection. As detailed in Chapter 3, the secondary 

data collection focuses on case studies from rural Missouri, using two refined datasets that 

represent rural regions. These datasets provide accurate geographical centroids of US Census 

Block Groups, locational data for existing healthcare facilities, and travel distances derived from 

the Missouri road network. Developed for verification and validation purposes, they form a 

robust foundation for modeling healthcare access and equity. 

The primary data collection, elaborated in Chapter 4, employs a survey instrument 

designed to engage potential users and evaluate the strategic placement, operation, and utilization 

of TKBs. Building on a comprehensive discrete choice experiment, the survey investigates 

preferences for TKBs versus traditional hospitals across four distinct age groups: Seniors, 

Middle Age, Young Adults, and School Age. Key factors such as travel time and consultation 

type are examined for their influence on healthcare decisions. The survey data are analyzed using 

Hybrid Discrete Choice models, which integrate latent behavioral variables like technology trust 

and health literacy. These models, estimated using Maximum Likelihood Estimation, yield travel 

time decay functions for each age group, illustrating how the perceived utility of healthcare 

options, including TKBs, diminishes as travel time increases. These decay functions provide 

valuable insights into population-specific responses to TKB accessibility and consultation types, 

enabling detailed predictions of patient preferences. 
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The finalized travel time decay functions serve as critical inputs for the location 

optimization models presented in Chapters 5 and 6. Chapter 5 employs a continuous 

approximation approach, while Chapter 6 introduces a discrete optimization framework. Both 

approaches aim to determine the optimal network of TKBs to enhance healthcare access and 

equity in rural areas. By incorporating various performance measures, these models provide a 

comprehensive assessment of proposed solutions, offering actionable insights for addressing 

disparities in healthcare access. 

This research integrates empirical evidence with analytical rigor to tackle the complex 

problem of healthcare accessibility in underserved regions, providing a strategic framework for 

deploying TKBs that aligns with both equity and efficiency objectives. 
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Chapter 2 Background on Rural Healthcare Challenges and Omnichannel Solutions 

The primary motivation for this research is the limited availability and poor quality of 

healthcare in rural America, driven by a shortage of healthcare providers and facilities, rural 

transportation challenges, and the unique needs of rural residents. According to the U.S. Census 

Bureau, rural areas are defined as all population, housing, and territory not included within an 

urban area—where urban areas are defined as densely developed territories with 50,000 or more 

people (urbanized areas) or at least 2,500 and less than 50,000 people (urban clusters).  In the 

US, 19.3% of the population lives in rural areas, which account for 97% of the total land area 

(United States Census Bureau 2021). Rural residents tend to be older and experience worse 

health conditions than urban residents, with higher rates of obesity, smoking, and high blood 

pressure. They also face higher poverty rates and are less likely to have health insurance (CDC 

2024). These factors, combined with demographic, economic, and social challenges, place rural 

populations at greater risk for leading causes of death, including heart disease, cancer, 

unintentional injuries (e.g., opioid overdose), chronic lower respiratory diseases, and stroke 

(CDC 2024). Compounding these challenges is the lack of broadband access, which restricts 

telehealth options from home. 

Despite greater health needs, rural residents have lower access to healthcare services 

(Douthit et al. 2015). Rural hospital closures highlight this disparity—192 hospitals have closed 

since 2005, and 300 more are at immediate risk due to financial constraints (CHQPR 2024). 

Following closures, residents must travel approximately 20 miles farther for inpatient services 

and 40 miles farther for specialty care (United States Government Accountability Office 2023). 

Disparities are particularly stark for specialty services: urban areas have three times as many 

active physicians per capita and nearly seven to eight times more specialists such as 
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cardiologists, dermatologists, and gastroenterologists compared to rural areas (Orgera et al. 

2023). Federal and state programs provide incentives for physicians and support rural facilities, 

particularly through the Centers for Medicare & Medicaid Services (CMS), yet significant 

shortages persist. 

Limited healthcare facilities in rural regions lead to longer travel times for care. Sparse 

populations and underdeveloped road networks exacerbate these delays, as rural residents travel 

over twice as far as urban residents for medical and dental care (Akinlotan et al. 2021). On 

average, rural residents spend 34.2 minutes traveling to healthcare, with late-night trips 

averaging 67 minutes. Older residents face even longer travel times—40 minutes for those over 

65 compared to 28.2 minutes for younger adults (Akinlotan et al. 2021). Public transportation 

options are scarce, forcing older adults to rely on others for transport, especially for procedures 

that require someone to drive patients home (Lee et al. 2023). Transportation barriers further 

compound access issues (Krasniuk & Crizzle 2023; Dotse-Gborgbortsi et al. 2022; Syed et al. 

2013; Mattson 2010). 

Rural areas of the US remain critically underserved in terms of healthcare access, 

facilities, and providers, with significant travel burdens exacerbating these challenges. The 

omnichannel paradigm in healthcare delivery, presented in the following section, provides an 

opportunity to integrate multiple service channels, such as telehealth kiosks, to improve 

accessibility and reduce travel burdens for rural populations. 

2.1 Omnichannel Paradigm in Health Care Delivery: Opportunities and Benefits 

Digital technologies have unlocked new avenues for businesses to interact with 

consumers, such as self-service kiosks, remote monitoring devices, and mobile platforms (Diaz 

Baquero, 2021). This innovation has paved the way for the omnichannel strategy, which 
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transcends traditional transactional models by delivering a cohesive and integrated customer 

experience across multiple channels. Rather than simply offering different ways to purchase 

goods and services, omnichannel strategies enable businesses to engage with customers 

seamlessly, ensuring convenience and consistency at every touchpoint (Min, 2021). 

The omnichannel environment presents significant opportunities for healthcare 

organizations to revolutionize patient management by integrating more interactive and efficient 

processes (Moreira et al., 2023). This approach allows for the coordination of key operational 

tasks, including appointment scheduling, billing, and information verification. As an illustration, 

patients can now complete the preliminary stages of the registration process, verify their 

insurance coverage, and make the requisite payments via online platforms. Before the 

proliferation of omnichannel approaches to healthcare, patients were required to visit hospitals or 

clinics to receive medical care physically. As electronic devices become increasingly prevalent 

in healthcare provision, there is a clear indication that this traditional approach is set to undergo a 

significant shift. As more healthcare providers implement omnichannel strategies (Balestra, 

2018), there is an increasing opportunity to improve patient outcomes and experiences.  

Incorporating diverse access points for coordinating and delivering care presents a promising 

avenue for optimizing the healthcare system (Reuveni, 2017). 

A noteworthy advantage of an omnichannel strategy is the capacity for healthcare 

providers to integrate and harmonize their efforts across an expanded range of patient care 

channels (Varadarajan et al., 2021). This approach enhances efficiency within the healthcare 

system and its supply chain by giving patients greater control over their treatment options. It also 

significantly reduces unnecessary travel and minimizes patient wait times. By empowering 

patients to manage their care more autonomously, healthcare organizations can decrease hospital 
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utilization, improve patient compliance with treatment plans, and use the healthcare human 

resources more efficiently (Dinesen et al, 2016). Furthermore, implementing an omnichannel 

approach can significantly enhance inclusivity and accessibility within healthcare systems, 

particularly for underserved populations and those residing in rural areas. If various digital 

platforms for appointment scheduling, access to medical records, and care delivery are also 

integrated, this strategy can then address key barriers to healthcare access, such as limited 

transportation and geographic isolation.  

For low-income individuals or those in remote regions, who frequently encounter 

substantial challenges in reaching traditional healthcare services, omnichannel solutions can 

mitigate these disparities by offering alternative care delivery means, such as online portals or 

local kiosks. This improves operational efficiency and promotes healthcare equity by ensuring 

that vulnerable populations have access to timely, high-quality care, irrespective of their 

socioeconomic status or geographic location (Hermes et al, 2020). 

Similarly, individuals living with conditions such as HIV/AIDS and cancer may benefit 

significantly from an omnichannel healthcare system, which facilitates discreet and private 

communication between physicians and patients—a critical feature for addressing sensitive 

healthcare needs (Lebel and Devins, 2008). 

2.2 Omnichannel Healthcare: Essential Components, Platforms, Channels, and Devices 

Telehealth is a cornerstone of the omnichannel healthcare system, crucial in bridging 

geographic gaps in care, particularly for rural populations. It reduces barriers such as time, 

distance, and geography, enabling patients to access healthcare services more efficiently and at 

lower costs (Kuziemsky et al., 2019). Marcin, Shaikh, and Steinhorn (2016) further argue that 

telemedicine facilitates real-time consultations between patients and specialists, reducing 
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physical travel and improving access to expert care. This is especially vital for underserved 

communities and rural populations, where access to specialized care is often limited (Furrow, 

2022). However, evidence also suggests that telehealth is increasingly applicable in urban 

settings, where it helps reduce the need for in-person visits and improves efficiency (Kuziemsky 

et al., 2019; Chang et al., 2023). Table 2.1 summarizes devices and platforms available for 

omnichannel healthcare delivery. 
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Table 2.1 Omnichannel healthcare devices/platforms 

Type/Device/Platform Context of Application/Functionalities Selected 
Sources/References 

Telemedicine 
platforms/software 

Provide patients anywhere with 
synchronous access to doctors via voice, 
text, and video consultations, reducing 
geographical barriers, especially in rural 
areas. 

Kuziemsky et al. 
(2019); Bashshur et al. 
(2014); Hilty et al. 
(2020) 

Telehealth 
Kiosks/booths 

Standalone physical unit equipped with 
technologies and tools like blood 
pressure monitors and pulse oximeters to 
facilitate remote diagnosis, patient 
monitoring and consultations. 
Commonly used in rural or underserved 
areas for point-of-care services. 

Maramba et al. (2020); 
Courtney et al. (2010); 
Wise (2019) 

Wearable Health 
Devices 

Facilitates continuous health monitoring 
(e.g., heart rate, glucose levels), with the 
ability to upload data to the internet for 
remote access and analysis by healthcare 
staff or AI systems. These systems can 
also support two-way communication, 
enabling timely interventions such as 
notifying patients to seek in-person care 
when necessary. 

Chang et al. (2023); 
Resnick et al. (2012); 
Ganesh et al. (2021) 

AI-driven Diagnostic 
Systems 

Enhances efficiency in telemedicine by 
providing automated diagnostics in fields 
like dermatology when in-person 
services are overwhelmed. 

Baron, Chen, and 
Seidmann (2023); 
Subbhuraam and 
Panigrahi (2021) 

Drones  Used for delivering medical supplies to 
rural sites, rapidly retrieving and 
transporting specimens, monitoring 
public health in remote areas, and 
performing diagnostic imaging during 
emergencies. 

Nedelea et al. (2022); 
El-Sherif et al. (2022) 

 
 

Telehealth platforms, whether synchronous (real-time) or asynchronous (delayed), offer a 

wide range of services, including consultations, diagnoses, and monitoring (Hilty et al., 2020). 

These platforms have broad applicability across medical fields, including radiology, 

dermatology, pathology, and psychology, and are particularly effective in managing chronic 
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conditions such as diabetes, hypertension, and HIV (Bashshur et al., 2014; Pedersen et al., 2023; 

Ryu, 2012). The flexibility of telehealth solutions allows healthcare providers to tailor care 

delivery to patient needs, supporting the principles of precision medicine and ensuring that 

healthcare services are accessible, regardless of time or location. 

It is possible to conduct initial teleconsultations via mobile phones (through calls or texts) 

or web-based platforms using personal computers (or smart phones) without requiring a health 

kiosk or booth. This approach enables patients to access fundamental healthcare services 

remotely; however, they may be required to travel to a medical facility for examination and to 

collect data on their health status (e.g., to measure blood pressure or other vital signs). More 

advanced telehealth platforms and kiosks equipped with integrated biometric and clinical 

measurement tools have been developed, creating a continuum of solutions. While platforms 

typically operate on patient-owned devices for use at home, TKBs function as facility-based 

systems located outside the patient’s home. These advanced systems enable healthcare providers 

to remotely monitor patients' vital signs in real time, bridging gaps in accessibility and care 

delivery (Maramba et al., 2020). These kiosks allow for collecting crucial health data at the point 

of care, significantly improving the telehealth experience. 

Several types of telehealth kiosks are available, enabling consultations and offering a 

range of services, from basic point-of-care measurements like blood pressure monitors, pulse 

oximeters, and stethoscopes to advanced diagnostics such as electrocardiograms, retinal imaging, 

ultrasound, and on-site lab testing for blood glucose and other analyses. These kiosks are 

particularly valuable in rural, remote, and underserved areas where healthcare access is limited. 

For instance, MedicSpot in the UK provides web-based GP services via kiosks in pharmacies, 

allowing patients to connect with physicians remotely (Wise, 2019; Maramba et al., 2020). 
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Similarly, Amwell in the US offers freestanding kiosks with features like a touchscreen interface, 

integrated camera, credit card reader, private audio handset, and sanitation tools (Lovett, 2020). 

These kiosks make healthcare more convenient and accessible, helping to reduce barriers for 

many patients. 

Telehealth kiosks, as studied by Courtney et al. (2010), promote patient self-management 

and autonomy by providing convenient access to healthcare services in both rural and urban 

settings. They help reduce dependence on hospitals and clinics, thereby improving overall 

healthcare access. During the COVID-19 pandemic, telehealth kiosks became essential tools, 

easing the strain on healthcare facilities. For example, the H4D Consult Station was used to 

screen and detect suspected COVID-19 cases, significantly reducing nurses’ intake time and 

protecting healthcare workers from exposure (Maramba et al., 2020). These kiosks proved vital 

in managing the increased demand for testing, serving as a critical public health strategy during 

periods of social distancing and overwhelmed healthcare systems (El-Sherif et al., 2022). 

Stephens and Greenberg (2022) and Hayavi-Haghighi and Alipour (2023) emphasize the 

importance of integrating various digital systems and platforms into a broader healthcare system 

capable of managing the complexity of patient needs, from diagnosis to long-term care. They 

argue that omnichannel strategies must leverage the unique capabilities of each platform to 

ensure seamless care and improve patient outcomes. It is not surprising, then, that the integration 

of Artificial Intelligence (AI)—encompassing technologies such as machine learning, natural 

language processing, and predictive analytics—alongside emerging technologies like drones and 

blockchain represents a significant advancement in omnichannel healthcare. Baron, Chen, and 

Seidmann (2023) demonstrate how AI-driven systems can enhance telemedicine services, 

particularly in dermatology, by activating AI-based diagnostics when in-person care is 
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overwhelmed. This approach ensures that patients continue to receive care without delays, 

improving both efficiency and accessibility by optimizing resource allocation and reducing 

bottlenecks in healthcare delivery.  

For example, telehealth kiosks powered by Internet of Things (IoT)—a network of 

interconnected devices that collect and exchange data—and AI are advanced automated systems 

that use sensors to remotely monitor patients and deliver medical care (Subbhuraam and 

Panigrahi, 2021). In contrast, other kiosks, like those used for prescriptions, may have on-site 

staff such as clinicians or technicians. Increasingly, employers and insurers are setting up these 

kiosks in workplaces to provide employees with immediate access to offsite medical 

consultations when needed (Ganesh et al., 2021). Another area of potential integration is 

wearable health devices, which can be incorporated into telehealth kiosks and other existing 

healthcare service pathways, thereby enhancing the versatility of omnichannel healthcare 

strategies. These devices facilitate continuous monitoring of patient health metrics, enabling 

proactive care and reducing the necessity for frequent in-person visits (Chang et al., 2023; 

Resnick et al., 2012). When integrated with telehealth kiosks, wearables enable patients to 

upload health data, interact with clinicians remotely, and receive feedback without the need for 

travel. Such an integration allows patients to manage their own health more effectively, fostering 

greater autonomy while enhancing the accessibility and efficiency of healthcare services. 

Drones are crucial in delivering medical supplies and monitoring public health, 

particularly in remote areas and during emergencies (Nedelea et al., 2022). When integrated with 

AI, drones can go beyond transporting medical supplies by collecting data, performing 

diagnostic imaging, and assessing health conditions in real-time. This combination allows for 

more proactive and timely medical interventions in underserved regions, where geographical and 
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logistical challenges often limit access to healthcare. Additionally, blockchain technology can be 

embedded within various healthcare delivery channels to improve traceability, ensure the quality 

of care, and enhance the security of sensitive patient data. As Channi et al. (2022) highlight, 

blockchain strengthens privacy and facilitates secure communication between healthcare 

platforms, safeguarding patient information. This technology is particularly important as 

healthcare increasingly moves toward digital solutions, where concerns about data breaches can 

deter patients from fully utilizing telehealth services. 

Hence, an omnichannel healthcare strategy integrates diverse technologies like telehealth 

kiosks, AI diagnostics, blockchain for data security, drones, wearable devices, and web-based 

platforms to create a patient-centered experience. These components, whether integrated or 

independent, complement traditional care methods, aiming to improve access and quality, 

especially for underserved populations. The next section focuses specifically on the role and 

potential of telehealth kiosks/booths (TKBs) in this paradigm. 

2.2.1 TKB Use 

Our focus in this research is on the transportation and location aspects associated with 

accessing a network of TKBs, which are telehealth kiosks or booths designed as facility-based 

systems that provide healthcare services and diagnostics at convenient, non-residential locations. 

We do not consider the micro-level design or location decisions for TKBs, but envision these 

being located in or near retail, government or public safety buildings. For research on TKB usage 

patterns, user acceptance and the physical design of TKBs, see Demeris et al. (2013), Bahadin et 

al. (2016), and Letefat-nejad et al. (2020). Public telehealth kiosks/booths (TKBs) have been 

available as far back as 1989 (Jones 2009), primarily as a means to provide health information. 

These have mainly been used in clinical settings and in urban areas (Joshi and Trout 2014). 
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While TKBs continue to provide services such as electronic patient registration, symptom 

collection and health information provision, advances in telecommunications and technological 

developments for self-service health measurements have changed TKB services to include more 

diagnostic and therapeutic services, with and without teleconsultations. Letefat-nejad et al. 

(2020) provide a review of 37 articles from 2001-2018 describing TKB use across 11 countries 

for a range of services, including automated measurement of vital signs, HIV testing, and 

diagnosis of urinary tract infections. Another survey of 134 studies of TKB use showed that the 

most common primary roles for TKBs are providing health information (35%), clinical 

measurements (21%), screening (13%) and telehealth (8%) (Maramba et al. 2022). This survey 

also noted that TKBs “outperform personal smart devices” in the collection of clinical 

measurements.  

Interest in TKBs, along with all forms of telehealth, increased as a result of the COVID-

19 pandemic. For example, North Carolina deployed five TKBs in rural Robeson County in 2021 

with a goal to help communities with “inadequate broadband connections” (Administration for 

Strategic Preparedness and Response 2021). In another example, a TKB was deployed in the 

lobby of the sheriff’s office in Milam County, Texas (a safe location open 24/7 with reliable 

internet access) (Hendrix 2020; Health Care Service Corporation 2020). This TKB connected 

patients to providers (e.g., clinicians and nurse practitioners) located in Florida, but licensed in 

Texas, and it included a variety of self-service tools for collecting health data from the patient. 

This TKB also included a pharmacy robot to dispense commonly prescribed medications. 

Following each visit, the TKB automatically sanitized itself using UV light. (No appointments 

were required and the cost for use was $65.) TKBs are also of interest to health insurers, large 

firms and public organizations for their own employees or covered individuals (Galewitz 2016). 
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These are private TKBs used by employees to address common conditions such as colds, sore 

throats, upper respiratory issues, earaches etc. Costs to patients are described as “either nothing 

or no more than $15 per session” and the kiosks themselves cost $15,000 to $60,000 (Galewitz 

2016).   

TKBs are also being used outside the US. Huet (2023) reports on a French TKB where 

“connected medical instruments allow patients to conduct their own physical exam while 

speaking to a doctor on a screen.” This cost 100,000 euros to install (in 2020) and was seeing 

“about 30 patients a week”, with a visit costing 25 to 30 euros, the “same as a normal visit to the 

doctor.” A comprehensive evaluation of a multisite network of TKBs covered visits from 1715 

French patients in 2019-2020 (Falgarone et al. 2022). This included 31 TKBs, with most located 

in Paris or its suburbs and at large companies or local authorities. Results showed that 72% of 

TKB users were female, with the main users being younger women (mean age 38.7). The visits 

to a TKB were evenly distributed over the days of the week with a mean usage time of 18 

minutes. The main reasons cited for visiting a TKB were cough disorders, pain, joint diseases 

and rhinitis. Some other studies have addressed more specialized uses of a TKB for managing 

chronic cardiovascular conditions in Singapore (Bahadin et al. 2016) and for teleopthamology in 

India (Delana et al. 2023). Detailed reports on the costs for using TKBs are limited, in part due to 

the customized nature of different TKBs and different government reimbursement schemes. 

Zanjani et al. (2020) reports that costs in the UK are “a bit less than what a typical visit to an 

office would cost” and “three times cheaper than an urgent care visit and vastly less expensive 

than a trip to an emergency department”. In summary, the literature includes a variety of reports 

on TKBs that provide a wide range of health services, but mostly from more urban areas and 

many for specialized situations.  
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2.3 Barriers to Adopting an Omnichannel Strategy for Rural Health 

Omnichannel healthcare strategies offer numerous benefits, such as improved 

accessibility and care integration across various platforms, including telemedicine, e-platforms, 

TKBs, and in-person consultations. However, several barriers and challenges hinder the 

implementation of these strategies, which must be addressed to realize their full potential in 

healthcare (see Figure 3.1). One significant challenge is patient confidentiality and privacy. 

Telemedicine interactions may be more susceptible to privacy breaches than in-person 

consultations, raising concerns about data security. Cascella (2018) highlights that patients may 

be reluctant to fully embrace telemedicine due to the perceived risks of data breaches. These 

concerns are further compounded in underserved and rural areas, where reliable internet 

infrastructure may be lacking, creating vulnerabilities in data transmission. As Myers (2019) 

emphasizes, the successful adoption of omnichannel healthcare requires overcoming privacy and 

security issues, especially in remote areas where data protection measures may be harder to 

implement. 

In addition to privacy concerns, personalized care is another challenge. Moreira et al. 

(2023) argue that omnichannel healthcare systems must provide patients with personalized 

information and services tailored to their individual preferences and needs. However, this also 

heightens the risk of data breaches, as more detailed information must be shared across various 

platforms. Balancing the need for personalization with stringent privacy measures is a complex 

task, particularly in the context of remote areas, where internet connectivity issues further 

complicate the delivery of personalized care. Another obstacle to adopting omnichannel 

strategies is the lack of integration between different channels of care. Barbosa and Casais 

(2022) note that without a unified system to manage services and inventories, healthcare 
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providers struggle to offer seamless experiences to patients. If service channels are not properly 

integrated, patients may experience delays or shortages in care.  
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Table 2.2 Challenges in implementing omnichannel healthcare in rural areas 

Barrier/Challenge Impact/Explanation Source/Reference 

Patient 
confidentiality and 
privacy 

Telemedicine poses higher risks for 
privacy breaches, making patients reluctant 
to adopt it, especially in rural areas with 
weak internet infrastructure. 

Cascella (2018); 
Myers (2019) 

Personalized care Delivering personalized care requires 
sharing more detailed information, which 
increases the risk of data breaches, 
especially in rural areas with poor internet 
connectivity. Moreover, telemedicine 
cannot fully replicate in-person care, 
particularly for physical assessments and 
building long-term patient-provider 
relationships, further highlighting the need 
for a balanced approach to healthcare 
delivery. 

Moreira et al. (2023); 
Balestra (2018); Yang 
& Kozhimannil 
(2016); Moulaei et al. 
(2023) 

Telecommunication 
infrastructure 
challenges 

Without proper integration of service 
channels, delays and shortages in care 
arise, making advanced services like 
telesurgery difficult due to network latency 
issues. 

Barbosa & Casais 
(2022); Gupta, Shukla 
& Tanwar (2020) 

Regulatory and 
legal barriers 

Varying telehealth regulations and 
licensure requirements across states 
complicate omnichannel adoption, creating 
inconsistency in care and higher 
operational costs. 

Gajarawala & 
Pelkowski (2021); 
Myers (2019) 

Patient 
psychological 
resistance 

Patients in remote regions feel isolated or 
suspicious of new technology, which limits 
telemedicine acceptance. Social interaction 
is essential for rural communities. 

Hirano et al. (2023); 
Mohammadzadeh, 
Rezayi & Saeedi 
(2023) 

Remote and 
geographical 
challenges 

Rural areas face additional challenges, 
such as remote and geographical 
challenges, including difficulties in 
transporting necessary equipment, which 
hinder telemedicine implementation. 

Mohammadzadeh, 
Rezayi & Saeedi 
(2023) 
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Gupta, Shukla, and Tanwar (2020) point out, telesurgery (an advanced form of 

telemedicine that holds great promise for providing specialized care in underserved regions) 

depends on real-time data transmission, which is challenging in rural healthcare systems with 

limited broadband access. Network latency can cause delays in data transmission between the 

surgeon and the robotic system, potentially compromising the precision of the surgery and 

leading to suboptimal outcomes. Also, regulatory and legal barriers further complicate the 

implementation of omnichannel healthcare. Gajarawala and Pelkowski (2021) highlight that 

varying state regulations in the US regarding telehealth make it difficult for providers to offer 

consistent care across state lines. For instance, while some states allow physical exams via 

electronic means, others still require in-person evaluations. This inconsistency confuses 

providers and adds additional costs, as they must navigate multiple licensure requirements.  

Myers (2019) also identifies licensure, coverage, and reimbursement issues as significant 

obstacles for widespread adoption of omnichannel strategies. These barriers are particularly 

relevant for telehealth services, which often rely on multistate licensure and clear reimbursement 

frameworks to function effectively across different regions. Additionally, mental barriers, such 

as patients’ feelings of isolation and suspicion toward new technology, further hinder the 

acceptance of telemedicine in remote regions (Hirano et al., 2023). According to 

Mohammadzadeh, Rezayi, and Saeedi (2023), telemedicine implementation in these locations 

faces unique challenges, such as harsh weather conditions, difficulty in transporting necessary 

equipment, and connectivity issues. Social factors, such as the importance of physical 

interaction, are particularly significant in rural areas, where residents may experience isolation 

due to geographic dispersion or rely on tight-knit, small communities for support. Therefore, 

broader adoption of omnichannel healthcare must consider these social dynamics in addition to 
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addressing technological limitations. Telemedicine, for example, cannot fully replicate certain 

in-person care functions, particularly when a comprehensive physical assessment of the patient is 

required (Balestra, 2018).   

Bearing in mind this social-physiological nature of rural communities, there is a concern 

that over reliance on telemedicine might compromise continuous care for patients requiring 

several hours of one-to-one services in a calendar day. Yang and Kozhimannil (2016) argue that 

virtual healthcare providers often lack the personal touch of in-person visits, essential for 

building long-term patient-provider relationships. Moulaei et al. (2023) support this by showing 

that many patients still prefer in-person consultations over telemedicine, citing better accuracy in 

diagnosis, physical examination, and treatment as their reasons. For omnichannel healthcare to 

succeed, it should complement, rather than replace, in-person care by addressing these relational 

barriers.  

While not the primary focus of this research in its initial phase, overcoming these barriers 

is essential for the successful long-term implementation of omnichannel healthcare, particularly 

in rural regions where access challenges persist. Addressing critical factors such as system 

integration, patient trust, and technological limitations will be necessary to ensure that 

omnichannel strategies can effectively enhance healthcare delivery without compromising the 

benefits of in-person care. The next section focuses on modeling spatial accessibility to better 

understand and quantify the fitness of placing healthcare facilities, such as TKBs, to address 

some of these challenges effectively. 

2.4 Modeling Spatial Accessibility 

There are several approaches for measuring and modeling spatial accessibility to 

healthcare. Measures can address the presence or number of healthcare providers within a 
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defined catchment area (i.e., availability), the percentage of potential users within the catchment 

of a healthcare facility (i.e., coverage), both the supply of healthcare and the demand from 

potential users (e.g., an accessibility index as in Luo and Wan (2003)), or spatial proximity (e.g., 

based on travel distance or time). Each of these approaches to measure accessibility can be used 

to provide descriptive measures for a spatially distributed health system or as an objective or 

constraint for prescriptive analytics, such as optimization modeling to design a network of 

facilities. Note that accessibility and coverage measures can be based on residents, potential 

users or geographic locations within one or more catchment areas of healthcare facilities, and 

travel time (distance) can be calculated for different populations (e.g., all residents, all potential 

users or actual users) and different geographic regions. 

One important feature for evaluating and designing networks of healthcare facilities is the 

“distance decay effect”. This captures the decline in a patient’s willingness to travel to a facility 

(e.g., a TKB) as the travel time or distance increases. Because travel time is perhaps more 

important than travel distance, we use the term “travel time decay” as that more accurately 

reflects patient behavior. (We acknowledge that much of the literature focuses on “distance 

decay” models, where a simple conversion may be used to estimate travel time from travel 

distance.) Empirical studies of the travel time decay seek to identify the shape of the decay 

function with respect to travel time (or distance) and the catchment area, or the maximum travel 

time (or distance) patients are willing to travel. Empirical studies typically involve surveys of 

potential patients or analysis of data sets that include the patient and provider locations (e.g., 

addresses). The resulting decay behavior has been shown to depend on the type of healthcare 

facility and services, and the geographic and cultural setting. For example, Arcury et al. (2005) 

reported patients in rural North Carolina face a 5% decrease in the number of routine care visits 
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for each additional kilometer that a patient must travel, as well as a lesser impact of travel time 

for acute and chronic care visits compared to routine care. McGrail et al. (2015) surveyed 

residents in rural Australia (1079 questionnaires) and found travel time decay depends on 

“degree of rurality”, with a suggested maximum catchments of 60 minutes for “closely settled 

areas” and 120 minutes for “sparsely settled areas”. Weinhold et al. (2022) showed how the 

travel time decay based on a German national health survey of 1598 participants depends on the 

patient age, region (urban vs small town/rural), and medical specialty, with 95% of the “small 

town/rural” patients traveling at most 33 minutes for a general practitioner and 61 minutes for 

orthopedists. Wood et al. (2023) reviewed Australian studies on accessibility to health care 

services and showed that most studies addressed accessibility in urban areas, with limited 

attention to “regional/rural/remote” areas. In summary, empirical studies to assess travel time 

decay generate situation specific results and tend to require time consuming data collection 

efforts.  

A travel time decay function is important to translate potential users into willing system 

users based on their locations relative to the facilities (or providers), and it addresses two 

important issues: (i) identifying catchment areas; i.e., travel time limits, and (ii) identifying the 

shape of the decline in willingness to visit a facility as travel time increases. A wide variety of 

travel time decay functions have been presented in the literature, including continuous functions 

(exponential, gaussian, log-logistic, power, piecewise linear, etc.) and discontinuous (step) 

functions. While the value of properly calibrating the travel time decay function is widely 

recognized, it has often been ignored in academic studies. McGrail (2012) states “there is little 

empirical evidence to guide the choice of one decay function over another” and “many authors 

have developed distance-decay functions which are smoother and continuous in their decay; 
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however without any empirical evidence.” Similarly, Wan, Zhan, Zhou and Chow (2012) noted 

that “researchers have used arbitrarily determined impedance [distance decay function] 

coefficients in previous studies…” and Wang et al. (2021) state “…selection of a particular 

distance decay function…should be determined empirically in order to most accurately represent 

actual patterns.” Note this could be done prospectively by asking potential or actual patients how 

far they are willing to travel for healthcare, or retrospectively by analyzing data on healthcare 

utilization for actual trips.  

Wang (2012) reviews healthcare accessibility methodologies and assesses a range of 

functions proposed for modeling travel time decay. Stacherl and Sauzet (2023) review gravity-

type models for travel time decay, similar to those from spatial interaction or retail modeling. 

Step functions have also been used to model distance decay, as in the two-step floating 

catchment area (2SFCA) model and its extensions (e.g., McGrail 2012; Wan, Zou and Stenberg 

2012). Wang et al. (2021) examined five continuous distance decay functions for cancer care in 

nine states in Northeastern US using travel between pairs of 5,969 zip codes They found that 

85% of patients traveled 60 minutes or less, and 99.6% of patients traveled 180 minutes or less. 

Jia et al. (2019) analyzed travel for hospital inpatient care in Florida from over two million 

hospital discharge records in a state database. They compared four distance decay functions and 

showed a log-logistic function was a slightly better fit to the data than an exponential function. 

The data showed that rural patients traveled an average of 50.9 minutes versus 16.9 minutes for 

non-rural patients. Jia et al. (2017) fit four distance decay functions for travel to hospitals from 

over 2.5 million patient visits related to cardiovascular or neurological surgery in a state 

database. The log-logistic function was the best fit to the data, though the cardio and neuro 
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patients showed different distance decay effects. These studies illustrate how empirical data 

leads to different catchment areas and different decay functions in different settings.   

A very common accessibility measure for healthcare is the two-step floating catchment 

area (2SFCA) model (Luo and Wang 2003). This defines accessibility from the patient 

perspective using the “Accessibility Index”, which is defined in two steps. The first step is to 

calculate the ratio of healthcare providers (or provider capacity) to population within a specified 

catchment of each facility. Because a patient site may be in the catchment area for several 

facilities, that patient site population can enter into the calculation of the ratio for several 

facilities. The second step calculates the Accessibility Index for each patient site as the sum of 

the ratios for all provider facilities within the specified catchment of the patient site. Luo and 

Wang (2003) illustrated the accessibility index for primary healthcare in the Chicago region with 

a catchment of up to 50 minutes of travel time. The use of a catchment area in the 2SFCA 

effectively defines travel time decay in a binary fashion with “no decay” for those within the 

catchment and “total decay” (zero willingness to use a facility) for those outside the catchment.  

The 2SFCA has been used extensively for analyzing accessibility of existing healthcare 

systems and as a springboard for a number of extensions (McGrail 2012; Gu et al. 2023).  The 

lack of travel time decay behavior is a known weakness of the basic 2SFCA model, and the 

extended-2SFCA (E2SFCA) model computes accessibility to healthcare facilities on the basis of 

several concentric catchment areas, where the likelihood that a patient travels to a facility 

decreases with the distance or travel time to the facility (Luo and Qi 2009). This can be viewed 

as a discrete approximation to a continuous travel time decay function. Wan, Zhan, Zou and 

Chow (2012) use the E2SFCA model with four catchments, where the farthest is at 60 minutes, 

for computing Accessibility Indices to primary care providers in a region of Texas. McGrail 
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(2012) compares two step functions and a continuous power weighting function for computing 

Accessibility Indices from the E2SFCA for travel to general practitioners in Victoria, Australia 

using a maximum catchment of 60 minutes. Results showed “relatively minor 

differences…particularly in more sensitive rural areas” between the Accessibility Indices from 

the step and continuous decay functions. Bauer and Groneberg (2016) develop a variation of the 

2SFCA that defines a different distance decay function for each patient location, so there are 

variable catchment sizes, with a case study for primary care physicians in Berlin, Germany. Tao 

et al. (2020) extend the E2SFCA to a generalized version GV2SFCA for analyzing delivery care 

at hospitals in China, with variable catchment sizes allowing travel up to 170 minutes. 

Ghorbanzadeh et al. (2021) compare the basic 2SFCA model and the E2SFCA model for access 

to treatment for COVID-19 in Florida, where the E2SFCA uses weights of 1, 0.6, and 0.22 for 

three catchments of 10, 20 and 30 minutes (i.e., 100% of patients within 10 minutes, 60% of 

patients between 10 and 20 minutes, and 22% of patients between 20 and 30 minutes will get 

treatment). Gu et al. (2023) present a “balanced 2SFCA” model for hospital accessibility in 

China with a travel time of 80 minutes for the farthest catchment. They also use the Gini index to 

measure equity. Another example of measuring equity with the Gini index is in Cheng et al. 

(2020) where the basic 2SFCA is used to analyze accessibility for elderly residents in Nanjing, 

China.  

Each travel time decay model requires deciding on values of one or several parameters to 

calibrate the model and determining one or more catchment limits. This calibration can be done 

based on data collected from surveys, secondary sources (e.g., Medicare data in the US) and/or 

stakeholder or expert opinions (e.g., focus groups). As noted earlier, a major concern is that 

parameters for the distance decay models are often not calibrated using empirical data, in spite of 
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studies showing these parameters vary with the location, types of health services provided, and 

characteristics of the potential users. The data needed to calibrate continuous decay models can 

be challenging to acquire as it may require considerable data collection efforts, and primary or 

secondary data collection in the area of healthcare may need to overcome limited access and 

privacy regulations. Continuous functions can also be challenging for stakeholders (e.g., patients, 

healthcare staff) to interpret and the proper functional form is not known in advance,, as many 

different forms could potentially fit a given dataset. 

For our study, we seek to measure accessibility for a particular type of new healthcare 

service (TKBs in a rural area) in light of other healthcare options (travel to other facilities or not 

seeking care). Thus, one cannot use empirical utilization data based on patient visits to rural 

TKBs to calibrate the travel time decay model, as such data is not available to be collected 

directly or extracted from secondary sources (like Medicare data). Further, as the literature notes, 

it can be challenging to determine the best continuous decay function, and simpler functions that 

are easier to estimate and understand can provide useful results. For example, it is likely more 

practical and easier for a group to understand and estimate a piecewise linear function or a step 

function with few steps using defined catchment travel times, rather than to define a particular 

continuous decay function.  

Thus, in our research, we adopted an alternative efficient approach to estimate the travel 

time decay more accurately using a discrete choice experiment with an online survey of potential 

TKB users. This approach includes “decision makers” (i.e. potential TKB users) who choose 

among a set of alternatives (e.g., travel to a TKB, travel to another healthcare facility) under the 

assumption that decision makers seek to maximize their “utility” (Train 2009). Discrete choice 

models are widely used in transportation modeling (Ben-Akiva and Bierlaire 1999), and have 
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been used for modeling a wide variety of healthcare decisions, such as healthcare mode choice in 

China (Jiang et al. 2020), emergency care choice in the UK (Bhattarai et al. 2019), and COVID-

19 vaccine choices among young people (McPhedran et al. 2022). Our survey provided potential 

TKB users with a set of scenarios, where in each scenario they choose between visiting a TKB 

with a specified travel time or visiting a hospital with a specified travel time. Scenarios were 

designed to reflect rural areas were the hospital is likely to be farther than the TKB. We used the 

survey results to develop discrete choice random utility models for four different age groups to 

model an individual’s likelihood to use a TKB. Chapter 4 contains details on the discrete choice 

experiments, including details on the survey and the multinomial logit modeling. The result of 

the discrete choice modeling is a continuous travel time decay function, expressed as a 

probability of a resident choosing to visit a TKB if they have to travel for a given time. This 

travel time decay function provides valuable insights into the factors influencing individuals' 

willingness to travel for healthcare, which are further explored in the following subsection. 

2.4.1 Willingness to Travel for Healthcare 

Willingness to travel for healthcare depends on several factors, including transportation 

availability, psychological motivations, cost, safety, waiting times, and clinical quality. While 

transportation services aim to improve healthcare access, they do not always yield the desired 

outcomes (Syed et al., 2013; Lyeo et al., 2024; Solomon et al., 2020). Psychological motivations, 

such as social interactions during travel, can improve well-being (Hua et al., 2024). However, 

long travel distances and extended travel times remain critical barriers to accessing care, 

significantly limiting the ability of individuals in underserved areas to receive timely and 

adequate healthcare services (Zhong et al., 2021; Balia et al., 2020). 
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Patients' willingness to travel is influenced by demographics and clinical severity. 

Younger and more severely ill patients are more likely to wait or travel longer distances for 

higher-quality care (Bruni et al., 2021). Telehealth has emerged as an alternative for reducing 

travel, particularly for weight management and consultations requiring frequent interactions 

(Rauch et al., 2022). However, telemedicine faces limitations for certain healthcare needs, such 

as palliative care and conditions like HIV and cancer, where privacy concerns or the need for in-

person interactions may prompt patients to travel longer distances to access specialized care 

(Johnson & Samson, 2024; Zigah et al., 2023; Maroju et al., 2023). 

Patients’ willingness to travel for healthcare is often influenced by the need for 

specialized care, the reputation of healthcare facilities, and the perceived quality of services. For 

elective procedures, many individuals are willing to travel farther to minimize risks and access 

highly skilled providers, particularly older adults or those seeking specific expertise (Bühn et al., 

2020). This growing willingness to travel for healthcare highlights the importance of 

strategically locating health facilities to balance accessibility, quality of care, and patient 

preferences, a topic we explore further in the next section. 

2.5 Optimization Models for Locating Health Facilities 

While much of the research on healthcare spatial accessibility focuses on descriptive 

analytics, there is a large body of work on prescriptive optimization for healthcare facility 

location. However, little research addresses optimal location modeling for telehealth 

kiosks/booths (TKBs) of the type considered here. Alcaraz et al. (2009) empirically compared 

TKB placements and found that kiosks located at neighborhood health centers and public 

libraries had the highest usage. Interestingly, while both laundromats and libraries offered the 

shortest average travel distance to users, usage remained highest at libraries and health centers. 
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Strategic facility location models often focus on coverage, a concept introduced by 

Church and ReVelle (1974) in the seminal Maximal Covering Location Problem (MCLP), which 

seeks to maximize demand coverage within defined catchment areas. Extensions, such as the 

Weighted Benefit MCLP (Church & Roberts, 1983) and the Generalized MCLP (Berman & 

Krass, 2002), incorporate travel time decay using step functions. Gradual coverage models with 

alternative decay functions (e.g., linear, exponential) and continuous location versions have been 

explored as well (Berman et al., 2003, 2010; Drezner et al., 2004; Karasakal & Karasakal, 2004; 

Karatas & Eriskin, 2021). 

While partial coverage is well-studied in facility location problems, Ahmadi-Javid et al. 

(2017) reported that only 10% of healthcare location papers surveyed incorporated partial 

coverage, mostly for emergency applications. Related models for partial coverage in various 

transportation systems have addressed railway station siting (Chanta & Sangsawang, 2021), 

transport hubs (Peker & Kara, 2015), retail (Küçükaydın & Aras, 2020), and fire stations (Wang 

et al., 2016). Despite the prevalence of MCLP-based models, there is limited focus on 

transportation access, spatial equity, and proximity in healthcare location research (Shehadeh & 

Snyder, 2023). 

More recent healthcare optimization models integrate travel time or distance decay. Lim 

et al. (2016) modeled vaccine distribution with step-function decay across three catchments. Luo 

et al. (2022) presented a multi-objective EMS station location model addressing urban-rural 

inequalities. Vicencio-Medina et al. (2023) optimized mobile unit placements for COVID-19 

patients in Mexico using a mixed-integer programming model. Almeida et al. (2024) located 

neonatal screening centers in Brazil using gravity-based decay functions, while Wu et al. (2024) 

formulated a robust EMS location model incorporating equity and random demand. Mendoza-
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Gómez and Ríos-Mercado (2024) applied piecewise linear decay to locate facilities for multiple 

health services in Mexico, and Erdogan et al. (2024) addressed clinic placement for bladder 

cancer screening with a distance decay Gompertz function. 

2.6 Research Gap and Conclusion 

While omnichannel healthcare holds significant promise for improving access and 

integrating various services, numerous barriers must be addressed to realize its full potential. It is 

important to avoid assuming that the same factors—whether opportunities, benefits, or barriers—

will lead to successful implementation across different healthcare systems and regions. The 

impact of these factors is highly context-dependent, influenced by patient demographics, the 

types of channels employed (e.g., telehealth kiosks, drones, online platforms, remote surgery 

systems, and AI-based tools), the functional capabilities of these channels, and the range of 

health conditions they aim to address. 

A "one-size-fits-all" approach is ineffective for designing omnichannel healthcare 

strategies. Further empirical research is required to identify the most significant barriers to 

integrating multiple care delivery channels—such as telehealth kiosks, drones, and virtual 

consultations—to improve healthcare access and equity, particularly for rural and underserved 

populations. For instance, while recent studies (e.g., Nedelea et al., 2022; Baron, Chen, and 

Seidmann, 2023) highlight the potential of drones and AI to complement telehealth systems 

during emergencies by providing real-time monitoring and public health support, their 

deployment in non-emergency contexts remains limited. Additionally, there is insufficient data 

on how these technologies can be effectively integrated to reduce healthcare inequality, 

especially in rural settings. Similarly, the use of Telehealth Kiosks/Booths (TKBs) in rural areas 

as part of an omnichannel healthcare system warrants further research to understand their role in 
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addressing healthcare disparities, optimizing resource allocation, and complementing other 

delivery channels like drones and virtual consultations. 

Existing studies lack a comprehensive approach that integrates empirical analysis with 

modeling and analytics to address healthcare access challenges in rural areas. In this report, we 

focus specifically on the deployment of Telehealth Kiosks/Booths (TKBs) in rural areas as a 

means to enhance healthcare access and equity, addressing critical gaps in current research and 

practice. Specifically, there is a gap in understanding: 

1. How travel time decay influences patient preferences for telehealth kiosks (TKBs) as 

an alternative healthcare channel. 

2. How empirical insights can inform the optimal location modeling and network design 

of TKBs to improve access and equity. 

3. How these models can incorporate real-world data to address the unique spatial and 

demographic characteristics of rural healthcare systems. 

4. What are the characteristics of optimal TKB networks for rural areas, including the 

ideal number of TKBs based on factors like population, geography, demographics, 

and cost, and the best strategies for their distribution—whether clustered in 

population centers or spread more evenly to balance accessibility and efficiency. 

This study addresses these gaps by combining empirical analysis, through discrete choice 

experiments and survey data, with modeling and analytics approaches to estimate travel time 

decay functions and model optimal TKB placements. By leveraging these methods, the research 

provides a robust framework for designing integrated telehealth networks that enhance 

healthcare accessibility and equity in rural and underserved regions.  
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Chapter 3 Rural MO Data sets 

In this chapter, we developed two case study datasets for Missouri to serve as the 

foundation for modeling healthcare accessibility and equity in rural areas and for verification and 

validation of the models of TKB networks to ensure their accuracy and applicability. We used 

the Missouri dataset for this research because Missouri closely mirrors the national trends where 

rural residents face significantly lower levels of access to healthcare. In Missouri, where the 

population is 6.2 million, approximately one-third of the population (2.06 million) lives in rural 

areas, with 99 of Missouri’s 115 counties being rural (Missouri Department of Health and Senior 

Services 2024). Seniors (65 & older) comprise 19.4% of the population in rural areas, versus 

16.2% in urban areas (Missouri Department of Health and Senior Services 2024). Missouri had 

12 rural hospitals close in the period 2014-2023 which left 50 counties (43% of Missouri’s 

counties) without a hospital (Missouri Department of Health and Senior Services 2024; Missouri 

Department of Health and Senior Services 2023). Furthermore, the remaining rural hospitals tend 

to offer less specialized services. For example, Missouri has 56 rural hospitals, but none with a 

Level 1 Trauma Center, Pediatric Trauma Center, Stroke Center or STEMI Center. In contrast, 

Missouri’s urban areas have 133 hospitals with 95 (71%) at Level 1 or Level 2. In terms of 

Missouri’s health outcomes and behaviors, life expectancy is 2.4 years lower in rural areas 

compared to urban areas, and rural Missourians generally have poorer nutrition, less physical 

activity, higher tobacco use and less insurance coverage than urban residents (Kuhns and Low 

2021). A survey of rural Missouri healthcare reported that the three most commonly cited 

barriers to healthcare were transportation (16%), lack of healthcare providers (16%) and limited 

service offerings (13%) (Missouri Rural Health Association 2022).   
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3.1 Development of Case Study Regions 

Two target regions were identified to investigate healthcare accessibility and equity in 

rural Missouri. The first region, located in West-Central Missouri, encompasses a seven-county 

area situated between Columbia and Kansas City. This region includes the counties of Carroll, 

Lafayette, Saline, Howard, Pettis, Cooper, and Moniteau. It was selected due to its 

predominantly rural characteristics, coupled with limited healthcare infrastructure and a sparse 

presence of hospitals, Federally Qualified Health Clinics (FQHCs), and Rural Health Clinics 

(RHCs). The second region in Southern Missouri included 10 counties. Like the West-Central 

region, Southern Missouri is marked by its rural nature, where healthcare facilities are 

particularly scarce, and access to services remains a significant challenge for residents. The 10-

county southern region includes only rural counties, while the seven-county West-Central region 

includes both rural and non-rural counties. Figure 3.1 provides a map of the two case study 

regions. The population density for these regions is on average 35.6 (persons per square mile) for 

the seven-county West-Central region and 14.8 (persons per square mile) in the 10-county 

Southern region. The density of potential TKB users may be somewhat smaller than the 

population density, depending on the types of services provided by the TKBs. In the case studies 

we use the population density values to indicate potential TKB users.    
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Figure 3.1 West-Central and Southern Missouri Case Study Regions 

 

Table 3.1 provides detailed information about the seven-county region in Missouri, 

including population, area, density, and the number of FQHCs (Federally Qualified Health 

Centers). FQHCs are federally funded nonprofit clinics located in medically underserved areas, 

which offer insight into healthcare availability. While FQHCs provide vital services, their 

distribution may not reflect a balanced spread across the region as multiple FQHCs are often 

clustered in towns. Furthermore, TKBs, as proposed, are expected to operate with significantly 

broader hours (potentially 24 hours a day) compared to typical FQHCs. Table 3.2 presents 

similar data for the 10-county region, including population, area, density, and the number of 

FQHCs.  
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Table 3.1 Characteristics of 7-county West-Central case study  

County Population 
(2022) 

Area (mi2) Population 
Density 

(persons/ mi2) 

Number of 
FQHC 

Cooper 16,722 565 29.6 0 

Howard 10,168 466 21.8 0 

Moniteau 15,220 417 36.5 1 

Lafayette 32,961 629 52.4 6 

Saline 23,007 756 30.4 1 

Carrol 8,423 694 12.1 1 

Pettis 43,353 685 63.3 3 

Total 149,854 4212 35.6 12 

Source for FQHCs is  
https://data-msdis.opendata.arcgis.com/datasets/76b8ca49558b44d197ae5fb372d1529a_0/about 
 

  

https://data-msdis.opendata.arcgis.com/datasets/76b8ca49558b44d197ae5fb372d1529a_0/about
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Table 3.2 Characteristics of 10-county Southern case study  

County Population 
(2022) 

Area (mi2) Population 
Density 

(persons/ mi2) 

Number of 
FQHC 

Reynolds 6,006 811 7.4 3 

Shannon 7,193 1004 7.2 1 

Carter 5,268 508 10.4 1 

Oregon 8,732 792 11.0 1 

Ripley 10,703 630 17.0 3 

Texas  25,336 1179 21.5 3 

Dent 14,467 754 19.2 2 

Iron 9,414 551 17.1 3 

Wayne 10,792 761 14.2 1 

Madison 12,753 497 25.7 0 

Total 110,664 7487 14.8 15 

Source for FQHCs is  
https://data-msdis.opendata.arcgis.com/datasets/76b8ca49558b44d197ae5fb372d1529a_0/about 

 

Both regions were deliberately chosen for their rural demographics, the absence of 

comprehensive healthcare infrastructure, and the evident disparities in access to essential 

healthcare services. The limited availability of hospitals and critical healthcare facilities, such as 

FQHCs, highlights the pressing need for targeted solutions to address healthcare inequities in 

these underserved areas (see Figure 3.2). 
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Figure 3.2 Distribution of Federally Qualified Health Centers (FQHCs) in Missouri.  

 

We also collected data on the age distributions in the two case study regions from state 

government sources (https://health.mo.gov/data/mica/profiles/SocialandEconomic/index.html) because 

we were interested in examining the willingness of different age groups to use a TKB. Table 3.3 

shows age distributions in the two regions, along with data for the US as a whole. The West-

Central region is quite similar to the US, while the more rural Southern region shows a greater 

percentage of Seniors and smaller percentage of Young Adults. 

 

  

https://health.mo.gov/data/mica/profiles/SocialandEconomic/index.html
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Table 3.3 Age distributions in the case study regions 

Age range Southern region West-Central region US 

0-4 (Preschool) 5.5% 6.2% 5.5% 

5-18 (School age) 17.3% 18.6% 17.5% 

19-29 (Young 
Adults) 

11.3% 13.8% 14.4% 

30-64 (Middle Age) 44.6% 43.9% 44.9% 

65+ (Seniors) 21.2% 17.5% 17.7% 

Source for US data: https://www.census.gov/data/tables/time-series/demo/popest/2020s-national-
detail.html 

 

3.2 Data Sources and Compilation 

To develop the two case study datasets for rural Missouri, we utilized a comprehensive 

approach that integrated geographic, demographic, and healthcare infrastructure data from 

reputable public sources. These data were compiled, processed, and visualized using ArcGIS Pro 

to ensure accuracy and usability for further analysis of healthcare accessibility and equity. 

The county boundaries for Missouri were obtained from the Missouri Spatial Data 

Information Service (MSDIS, 2024). The shapefiles were imported and visualized in ArcGIS 

Pro, where the target counties for each case study region were carefully extracted as new layers. 

For the West-Central Missouri region, this included Carroll, Lafayette, Saline, Howard, Pettis, 

Cooper, and Moniteau counties. This step established clear geographic boundaries for the 

analysis, ensuring a targeted and accurate scope for the study. 

To identify population demand points, Census Block Group centroids were acquired from 

the US Census Bureau Centers of Population dataset (US Census Bureau, 2024). These centroids 

represent the geographic population centers within each Census Block Group, providing a 
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granular view of where residents are concentrated across the target regions. Geographic 

coordinates, including latitude and longitude, were extracted and converted into XY event layers 

in ArcGIS Pro. This enabled precise visualization and spatial analysis of population nodes within 

the identified counties. These centroids served as demand points for modeling healthcare 

accessibility and travel distances to healthcare facilities. 

The locations of healthcare facilities—including hospitals, FQHCs, and RHCs—were 

integrated into the datasets from multiple sources. Shapefiles for Missouri hospitals and RHCs 

(as nodes, i.e., latitude and longitude coordinates) were obtained from MSDIS (MSDIS, 2024), 

ensuring consistency in geographic data collection. RHCs may be nonprofit or for-profit 

healthcare facilities designated for underserved rural populations, and they generally provide 

outpatient primary care, basic laboratory services, and some “first response” services. Some 

RHCs are specialized, as for pediatric care or OB/GYN services, and thus may not be good 

matches for the services at a TKB.  For FQHCs, geographic coordinates were obtained from 

publicly available federal health databases and imported into ArcGIS Pro. These data were 

processed and converted into spatial layers to align with the Census Block Group centroids. 

Given the sparse distribution of healthcare infrastructure in rural Missouri, the datasets included 

healthcare facilities both within and adjacent to the case study regions to capture realistic travel 

patterns. Thus, we included behavior for residents in a case study region who traveled for 

healthcare to a facility in an adjoining county outside the case study region.   

By combining accurate county boundaries, detailed population distributions, and 

healthcare facility locations, the resulting datasets provided a robust foundation for analyzing 

healthcare accessibility and spatial equity in rural Missouri. The meticulous compilation and 

processing of these data ensured that both case study regions—West-Central and Southern 
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Missouri—were accurately represented, supporting further empirical research and modeling to 

address healthcare access disparities. 

3.3 Distance and Travel Time Analysis 

To assess healthcare accessibility in the two case study regions, we used ArcGIS Pro's 

Network Analysis tools with the Missouri road network to calculate travel distances and times. 

We defined demand points for healthcare services as the geographical centroids of US Census 

Block Groups, providing 229 demand points in the Southern region and 140 in the West-Central 

region (on average 20-23 points per county). This approach allowed us to quantify the proximity 

of residents, represented by these centroids, to healthcare facilities and evaluate broader spatial 

accessibility between demand points and providers. 

 

 

Figure 3.3 Proximity of Census Block Group Nodes to the Closest Hospital in West-Central 
region. 

 

The Closest Facility analysis identified the nearest healthcare resource—hospital, Rural 

Health Clinic (RHC), and Federally Qualified Health Center (FQHC)—for each Census Block 

Group centroid (for example see Figures 3.3 and 3.4). These centroids served as proxies for 
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population demand points, while healthcare facilities were treated as destinations. For each 

centroid, the analysis provided: 

• The name of the closest healthcare facility, 

• The total travel distance (miles), and 

• The estimated travel time (minutes) based on the Missouri road network. 

 

 

Figure 3.4 Proximity of Census Block Group Nodes to the Closest Hospital in Southern region. 

 

Results revealed the sparse and uneven distribution of healthcare facilities in rural 

Missouri, with many residents relying on facilities outside their counties. This reflects the limited 

healthcare infrastructure in rural regions, where proximity to healthcare remains a significant 

challenge. Outputs from the analyses were exported to CSV files for both case study regions—

West-Central Missouri and Southern Missouri—providing foundational datasets for further 

accessibility modeling. 

To complete spatial accessibility analysis, a pairwise distance and travel time analysis 

was conducted using ArcGIS Pro's Origin-Destination (OD) Cost Matrix tool. This analysis 

calculated travel distances and times between every pair of Census Block Group centroids 

(population nodes) and healthcare facilities to allow the right incorporation of geographical 
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locations to be incorporated in optimization modeling where potential locations for TKBs 

correspond to block group centroids.  

 The OD analysis was performed separately for the three healthcare facility types 

(hospitals, RHCs, and FQHCs), capturing road travel distances along the Missouri transportation 

network, and estimated travel times accounting for road conditions and speeds. 

This detailed analysis of rural travel revealed that the average speed for trips from Census 

Block Group centroids to the nearest healthcare facility (hospital, FQHC, or RHC) was 37.8 mph 

in the Southern region and 35.4 mph in the West-Central region. As expected, longer trips 

generally occur at higher speeds, with trips to hospitals being the longest on average. 

In terms of accessibility, 30.7% of the population in the Southern region and 9.6% in the 

West-Central region would need to travel more than 20 minutes one-way to reach the nearest 

healthcare facility. For trips exceeding 30 minutes one-way, the percentages drop to 19.5% for 

the Southern region and just 0.5% for the smaller and less rural West-Central region, 

highlighting the greater access challenges faced by residents in the Southern region. 

Additionally, the ratio of road travel distance to straight-line distance (calculated from 

latitude and longitude) was approximately 1.4 for both regions. Based on these findings, the case 

studies assume an average travel speed of 35 mph and a travel circuity factor of 1.4 (indicating 

road travel is 1.4 times farther than the straight-line distance), reflecting the rural road network 

characteristics in these Missouri regions. 

3.4 Data Validation, Refinement, and Significance 

Following the initial data compilation, the datasets underwent a rigorous validation 

process to ensure accuracy and completeness. Errors in locational data and travel times were 



44 

 

identified and corrected, enhancing the reliability of the data. The finalized datasets incorporate 

the following key components: 

• Accurate geographical centroids for Census Block Groups, representing population 

demand points. 

• Precise locational data for existing healthcare facilities, including hospitals, Rural Health 

Clinics (RHCs), and Federally Qualified Health Clinics (FQHCs). 

• Verified travel distances and times derived from the Missouri road network using ArcGIS 

Pro tools, including (1) the distance and time from each demand node (block group 

centroid) to the nearest facility of each of the three types of healthcare facilities, and (2) 

the distance and time between each pair of demand nodes (block group centroids). 

In Chapters 5 and 6, these datasets serve as essential inputs for both modeling and 

analysis. Specifically, they underpin location optimization models that aim to enhance healthcare 

delivery by improving spatial accessibility and equity.   
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Chapter 4 Empirical Survey and Discrete Choice Experiments 

This chapter employs experimental and modeling frameworks to explore these 

relationships systematically. By leveraging stated preference methods and discrete choice 

models, the analysis identifies the key factors influencing medical facility selection, with a focus 

on patient age cohorts and consultation types. The findings contribute to understanding how 

Technology Trust and Health Literacy intersect with demographic and contextual variables, 

shaping preferences for traditional and modern healthcare options. These insights provide a 

foundation for designing interventions to improve healthcare accessibility and technology 

adoption across diverse patient populations. 

The decision-making process behind selecting a medical facility is multifaceted, shaped 

by an intricate interplay of individual characteristics, experiences, and the attributes of available 

options. At its core, this process reflects patients' familiarity with healthcare systems, their trust 

in technology, their ability to navigate complex medical settings and to handle the incurred costs. 

Trust in automated technologies and health literacy are two critical factors, influencing 

preferences and acceptance of various healthcare consultation modes. Additionally, contextual 

factors such as facility type, consultation mode, and travel time interact with demographic 

variables like age to refine these preferences, further highlighting the complexity of healthcare 

decision-making. This chapter explores these dynamics using a conceptual framework that 

integrates dispositional, skill-based, and contextual factors. 

A key concept in understanding medical facility choice is Technology Trust, defined as 

individuals' confidence in the reliability and efficiency of automated systems. This trust is 

shaped by personality traits, past experiences, and attitudes toward technology. Individuals with 

high Technology Trust are more likely to engage with modern technologies, perceiving them as 
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capable and reliable. On the other hand, those with lower trust may exhibit skepticism, 

questioning the safety and utility of automated systems. The role of Technology Trust in 

influencing preferences for innovative healthcare options, such as artificial intelligence (AI) 

consultations, is a focal point of this analysis. 

Similarly, Health Literacy plays a pivotal role in shaping healthcare preferences. Health 

Literacy encompasses the ability to understand medical terminology, communicate effectively 

with providers, and navigate healthcare systems. Individuals with higher health literacy are better 

positioned to make informed healthcare decisions and adapt to emerging technologies. As 

telemedicine and AI become integral components of modern healthcare, the interplay between 

health literacy and technology adoption becomes increasingly relevant. 

The remainder of this chapter is organized as follows. Section 4.1 introduces the 

conceptual model, outlining the key factors influencing patient preferences for healthcare 

facilities, including demographic characteristics, consultation types, and latent variables such as 

Technology Trust and Health Literacy. Section 4.2 describes the experimental design, focusing 

on the development of stated preference methods to capture individual choices. Section 4.3 

details the data collection process. Section 4.4 presents the discrete choice modeling framework 

used to analyze the data and derive travel time decay functions. Section 4.5 discusses the 

modeling results, emphasizing their implications for healthcare accessibility and equity. Finally, 

Section 4.6 concludes the chapter by summarizing the key findings and their significance for 

telehealth adoption and planning. 

4.1 Conceptual Model 

The decision to choose a medical facility is shaped by a multitude of factors that 

intertwine individual experiences, perceptions, and contextual elements. At the heart of these 
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influences lies individuals' familiarity with navigating healthcare systems and their trust in 

automated technologies, both of which play a significant role in shaping preferences. 

Furthermore, characteristics of the facilities themselves, such as the type of consultation offered 

and the expected travel time, introduce practical considerations that can make certain options 

more appealing. Demographic factors, particularly the patient's age, further refine these 

preferences, highlighting the complexity of healthcare decision-making. Figure 4.1 illustrates the 

proposed conceptual model, offering a visual representation of the interconnected variables that 

inform these choices. 

 

 

Figure 4.1 Conceptual Framework for Factors Influencing Medical Facility Choice 

 

Technology trust reflects the degree of confidence and reliance individuals place on 

automated technologies and systems. This trust is inherently dispositional, arising from an 

individual’s personality traits, previous experiences with technology, and overall attitudes toward 

its use (Jian et al., 2000; Merritt et al., 2013). Those with high levels of technology trust are more 

likely to perceive automated systems as reliable, efficient, and capable of executing tasks 

accurately. They engage with and depend on such systems more readily, embracing them as 
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valuable tools in various domains. In contrast, individuals with low technology trust often exhibit 

skepticism, hesitancy, and heightened concerns regarding the reliability and safety of automated 

systems. This dispositional trust significantly influences how people interact with technology, 

shaping their openness to adopting new technological innovations and their willingness to 

integrate these systems into everyday activities. Given this, we propose our first hypothesis: 

H1: Technology Trust Positively Influences Adoption of TKBs.  

Health literacy pertains to an individual’s ability to effectively navigate and manage the 

complexities of medical processes and settings. It encompasses a broad range of skills, including 

comprehension of medical terminology, recognition of symptoms, adherence to treatment 

protocols, effective communication with healthcare providers, and utilization of healthcare 

resources efficiently (Rudd, 2007; McCormack et al., 2010). Individuals with high health literacy 

are better equipped to make informed health decisions, ensuring that they can access and benefit 

from available healthcare services. These competencies are essential for successfully engaging 

with new healthcare technologies and environments. We then derive our second hypothesis:  

H2: Health Literacy Positively Influences Adoption of TKBs.  

Together, these hypotheses articulate the interplay between dispositional and skill-based 

factors that influence patients’ acceptance of TKBs. In the next section, we outline the empirical 

framework developed to evaluate these propositions and test the proposed relationships 

systematically. 

4.2 Experimental Design 

Individuals' willingness to travel to different telehealth facilities was elucidated using 

stated preference methods, which are attitudinal valuation techniques based on hypothetical 

scenarios (Gkartzonikas and Gkritza, 2019). Choice experiments are ideal for studying 
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preferences under controlled conditions. These experiments allow for the systematic 

manipulation and control of scenario attributes presented to respondents, which helps isolate the 

impact of each attribute on respondents' preferences.  

In the experimental design, respondents were asked to choose between different types of 

healthcare facilities when faced with a health issue requiring medical intervention, with the 

choice scenarios designed hierarchically around two main facility types: hospitals and TKBs. 

Hospitals represent traditional healthcare facilities without specified consultation types, while 

TKBs offer modern telehealth options with three distinct consultation types: AI Consultation, 

providing medical advice via artificial intelligence; Medical Professional Consultation, where a 

healthcare professional is present; and Telemedicine Consultation, involving the provision of 

care through telemedicine technologies. This setting leads to a hierarchy of choices determined 

by facility and consultation types. Respondents had to consider these options with varying travel 

times and the age of the individual needing care to determine their preferences. 

We developed an optimal experimental design to generate the choice scenarios to test our 

hypotheses regarding respondents' willingness to travel. This design aims to maximize the 

expected Fisher information, quantifying the amount of information an observable random 

variable carries about an unknown parameter (Kessels et al., 2006). To mitigate the sensitivity of 

choice designs to incorrect parameter guesses, we implemented a Bayesian efficient design, 

incorporating the researcher's uncertainty about the true parameters by specifying a prior 

distribution reflecting prior beliefs. To inform the prior distributions for the main experiment, we 

conducted a small-scale pilot study via Prolific (2024), a platform that recruits participants for 

online research, collecting 30 responses to the variables of interest. The respondents in the study 

were adults, while the patient scenarios included individuals across different ages. Patients were 
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categorized into five mutually exclusive age groups: Preschool Children (0-4 years), School-

Aged Children (5-17 years), Young Adults (18-29 years), Middle-Aged adults (30-64 years), and 

Seniors (65 years and older). 

4.3 Data Collection and Sample Description 

The research hypotheses were tested using data from an incentivized survey conducted 

through Prolific. The sample data was collected in May of 2024. Adult respondents (age 18 and 

over) in the United States whose first language was English were targeted, and 460 valid 

responses were collected. Table 4.1 shows the descriptive statistics for the socioeconomic 

characteristics of the respondents and the corresponding reference values for the US population 

(US Census Bureau 2024). 

 

Table 4.1 Demographic and Socioeconomic Characteristics of the Sample 

Attribute N (%) US% Attribute N (%) US% 
Gender Income 
Female 229 49.8% 51.4% Less than $25,000 75 16.3% 9.6% 
Male 225 48.9% 48.6% $25,000-$49,999 99 21.5% 14.9% 
Non-binary 4 0.9% - $50,000-$74,999 82 17.8% 15.7% 
Prefer not to 
say 

2 0.4% - $75,000-$99,999 79 17.2% 13.9% 

    $100,000-$149,999 73 15.9% 20.1% 
Age $150,000 or more 52 11.3% 25.9% 
18-24 55 12.0% 9.3%     
25-34 118 25.7% 13.9% Race and Ethnicity 
35-44 95 20.7% 12.6% Asian 32 7.0% 6.7% 
45-54 65 14.1% 12.7% Black or African 

American 
63 13.7% 13.9% 

55-64 64 13.9% 12.6% Hispanic or Latino 37 8.0% 19.1% 
65-74 52 11.3% 10.2% White 350 76.1% 69.6% 
75 or older 11 2.4% 7.2% Other 15 3.3% 9.7% 
        
Residence Education 
Rural 74 16.1% 14.0% High School or Less 150 32.6% 54.6% 
Suburban 246 53.5% 55.0% College 222 48.3% 40.9% 
Urban 140 30.4% 31.0% Graduate Degree 88 19.1% 4.5% 
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Regarding age distribution, the sample has a higher representation of young adults. 

Notably, the 25-34 age group is significantly overrepresented in the sample, comprising 25.7% 

compared to being 13.9% of the US population. Additionally, individuals in the 35-44 age range 

make up 20.7% of the sample, which is higher than their US population representation of 12.6%. 

Regarding areas of residence, the sample is closely aligned with US patterns, with rural areas 

slightly overrepresented in the sample (16.1%) compared to the US population (14%). Income 

levels indicate a higher representation in lower income brackets in the sample. Those earning 

less than $25,000 make up 16.3% of the sample versus 9.6% of the US population. However, 

higher income brackets, such as those earning $150,000 or more, are underrepresented in the 

sample (11.3%) compared to the US (25.9%). Education levels indicate that those with a 

graduate degree are overrepresented in the sample (19.1%) compared to the US population 

(4.5%). In contrast, those with only a high school education or less are underrepresented (32.6% 

vs. 54.6%). 

The differences between our sample and the broader US population suggest that we 

cannot generalize the descriptive statistics of the variables under study to all US adults. 

However, this limitation does not hinder the generalizability of the causal effects estimated by 

our modeling efforts. This is because we have an exogenous sampling situation, where the 

variations in sampling are independent of the outcome variables (Wolf et al., 2013). 

We assessed the quality and usefulness of the measurement instruments using 

confirmatory factor analysis (CFA) to evaluate the data's fit with the proposed measurement 

model (Brown 2015). The results show all factor loadings were close to or above the 

recommended 0.50 threshold, with critical ratios exceeding 1.96, indicating coherence between 

observed variables and latent constructs (Dunn and Waller 1994; Segars and Grover 1998). We 
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estimated the Average Variance Explained (AVE) for each latent construct (Brown 2015), 

showing all constructs had AVE values above 0.417, demonstrating clear differentiation. 

Comparing AVE with construct correlations suggested items were more related within constructs 

than between constructs (Segars and Grover 1998), indicating convergent validity.  

4.4 Choice Modeling 

The Hybrid Discrete Choice (HDC) modeling framework is an extension of traditional 

discrete choice models that integrates Latent Variables (LVs)—unobserved factors such as 

attitudes, perceptions, or preferences—into the decision-making process. By incorporating these 

LVs into the systematic utility of alternatives, the HDC framework provides a more 

comprehensive understanding of how both observed attributes (e.g., cost, distance) and 

unobserved psychological or behavioral factors influence choices (Ben-Akiva et al., 2002). The 

latent variables econometrically capture the combined influence of behavioral factors such as 

respondents' attitudes and perceptions. Incorporating latent variables allows for the inclusion of 

effects that cannot be directly quantified or observed. Attitudinal and perceptual survey questions 

act as indicators of these latent behavioral factors. The HDC model consists of two main 

components: the latent variables model and the choice model, depicted in Figure 4.2. 



53 

 

 

Figure 4.2 Integrated Latent Variable and Choice Model Framework 

 

The latent variables model is further divided into two parts: structural equations and 

measurement equations. The structural model equations capture the causal relationships among 

observable explanatory variables, attitudinal factors, and latent variables, as expressed in 

Equation 4.1: 

𝜂𝜂𝑙𝑙𝑙𝑙 = �𝛼𝛼𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑟𝑟
𝑟𝑟

+ 𝜈𝜈𝑙𝑙𝑙𝑙 (4.1) 

where 𝜂𝜂𝑙𝑙𝑙𝑙 represents the dependent latent variable 𝑙𝑙 for individual 𝑞𝑞, 𝑆𝑆𝑟𝑟𝑟𝑟 is the 

socioeconomic variable 𝑟𝑟, 𝛼𝛼𝑟𝑟𝑟𝑟 is a parameter to be estimated, and 𝜈𝜈𝑙𝑙𝑙𝑙 represents the error terms, 

which is assumed to assumed to be normally distributed with zero mean.  

The measurement equations establish the relationships between a latent variable and its 

attitudinal indicators. Given the ordered nature of these observed indicators, the measurement 

equations are specified as heteroskedastic ordered logit models, as demonstrated in equation 4.2: 
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𝑧𝑧𝑝𝑝𝑝𝑝∗ = �𝛾𝛾𝑙𝑙𝑙𝑙𝜂𝜂𝑙𝑙𝑙𝑙
𝑙𝑙

+ 𝜁𝜁𝑝𝑝𝑝𝑝 (4.2) 

where 𝑧𝑧𝑝𝑝𝑝𝑝∗  corresponds to the attitudinal indicator 𝑝𝑝 for individual 𝑞𝑞, 𝛾𝛾𝑙𝑙𝑙𝑙 is a parameter of 

the measurement equation to be estimated, and 𝜁𝜁𝑝𝑝𝑝𝑝 is the error term, which is assumed to follow 

a logistic distribution. The underlying assumption is that each discrete response 𝑘𝑘 observed 

within each indicator 𝑝𝑝, which has 𝐾𝐾 levels, is obtained through a censoring mechanism that 

defines different categories of response, according to equations 4.2 and 4.3, where each 

categorical response in the indicator 𝑧𝑧𝑝𝑝𝑝𝑝 is defined by a set of threshold parameters 𝜏𝜏; in 

consequence, the ordered model includes the estimation of a set of threshold parameters that 

define the categorical responses.  

𝑧𝑧𝑝𝑝𝑝𝑝 = �
1 if −∞ < 𝑧𝑧𝑝𝑝𝑝𝑝∗ ≤ 𝜏𝜏𝑝𝑝1
⋮ ⋮
𝐾𝐾 if 𝜏𝜏𝑝𝑝(𝑘𝑘−1) < 𝑧𝑧𝑝𝑝𝑝𝑝∗ ≤ ∞

 (4.3) 

The discrete choice model estimates individual choices. In this setting, a nested logit 

(NL) model is proposed since the choice set presented to the individuals can be partitioned into 

subsets, referred to as nests. The two nests separate choices into those corresponding to the two 

facility types: hospitals and TKBs. The nested logit model is appropriate when the choice set 

facing a decision maker can be partitioned into nests (subsets) in such a way that for any two 

alternatives in the same nest, the ratio of probabilities is independent of the attributes or 

existence of all other alternatives in the nest. And, for any two alternatives in different nests, the 

ratio of probabilities can depend on the attributes of other alternatives in the two nests. Then, 

individual choices are expressed as a function of the utility for each alternative 𝐼𝐼 and each nest 𝑘𝑘, 

as perceived by individual 𝑞𝑞, shown in equation 4.4: 
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𝑈𝑈𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑛𝑛𝑛𝑛 +
𝑛𝑛

�𝜃𝜃𝑛𝑛𝑛𝑛𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 +
𝑛𝑛

�𝛽𝛽𝑙𝑙𝑙𝑙𝜂𝜂𝑙𝑙𝑙𝑙 +
𝑙𝑙

𝜀𝜀𝑖𝑖𝑖𝑖 (4.4) 

where 𝑊𝑊𝑛𝑛𝑛𝑛 depends only on variables that describe nest 𝑘𝑘. These variables differ over 

nests but not over alternatives within each nest. Then, 𝜃𝜃 and 𝛽𝛽 are associated with the 

individual’s attribute and latent variable sets. The error term, 𝜀𝜀𝑖𝑖𝑖𝑖, is independent with a 

univariate extreme value distribution. However, the 𝜀𝜀𝑖𝑖𝑖𝑖’s are correlated within the nests. For any 

two alternatives 𝑞𝑞 and 𝑝𝑝 in nest 𝐵𝐵𝑘𝑘, 𝜀𝜀𝑖𝑖𝑖𝑖 is correlated with 𝜀𝜀𝑖𝑖𝑖𝑖. For any two alternatives in 

different nests, the unobserved portion of utility is still uncorrelated. Parameters were estimated 

via Maximum Likelihood Estimation using Apollo software (Hess and Palma, 2019). Choice of 

TKB with an in-person consultation was set as the reference alternative to address identification 

issues in the modeling effort (Walker et al., 2007). 

4.5 Modeling Results 

This section presents the results of the modeling framework used to evaluate the factors 

influencing individuals' choices. The proposed Nested Logit (NL) structure was tested against 

the Multinomial Logit (MNL) specification to assess its appropriateness. Statistical tests revealed 

that the null hypothesis asserting the equivalence of the NL structure to the MNL specification 

could not be rejected. This outcome supports the validity of the MNL model in this context. 

The robustness of the Independence of Irrelevant Alternatives (IIA) assumption was also 

examined. The IIA assumption, which underpins the MNL model, posits that the relative odds of 

choosing between any two alternatives remain unaffected by the inclusion or exclusion of other 

alternatives (McFadden, 1974). While this assumption is often a point of theoretical contention, 

the results demonstrate that the IIA assumption is not violated in this modeling scenario. 

Given these findings, the analysis focuses on the MNL specification as it provides a 

sufficiently robust representation of the choice dynamics under investigation. The subsequent 
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discussion highlights key insights from the estimated MNL model, shedding light on the 

relationships between explanatory variables and individual decision-making processes. 

Table 4.2 provides parameter estimates and robust t-ratios for both structural and 

measurement equations within the modeling framework. Structural equation parameters describe 

the relationship between latent constructs (Technology Trust and Health Literacy) and their 

corresponding observed indicators, while measurement equation parameters capture the 

associations between individual demographic variables and the latent constructs. Parameters with 

robust t-ratios exceeding the critical threshold (e.g., ±1.96 for a 95% confidence level) indicate 

statistically significant relationships, shedding light on the factors influencing Technology Trust 

and Health Literacy. 

 

Table 4.2 Parameter Estimates and Robust t-Ratios for Technology Trust and Health Literacy 
Model 

Construct Variable Estimate Rob. t-ratio 
Structural Equation Parameters 

Technology Trust 

TT01 3.114 8.27 
TT02 3.190 7.73 
TT03 2.085 8.37 
TT04 3.401 7.68 

Health Literacy 

HP01 1.284 8.10 
HP02 2.131 7.04 
HP03 2.390 6.51 
HP04 2.837 7.27 

Measurement Equation Parameters 

Technology Trust Aged 30 or less -0.270 -1.56 
Race: Black 0.313 2.14 

Health Literacy 

Female 0.263 1.96 
Middle Age 0.491 3.43 
Senior 1.075 5.24 
High Income 0.350 1.96 
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The structural equation results indicate that all observed variables (TT01–TT04 and 

HP01–HP04) are strongly and positively associated with their respective latent constructs, as 

reflected by their parameter estimates and robust t-ratios exceeding six. These findings confirm 

that the indicators effectively capture the underlying constructs of Technology Trust and Health 

Literacy. For instance, the high estimate of TT04 (3.401, t-ratio = 7.68) underscores its strong 

contribution to measuring Technology Trust. Similarly, HP04 (estimate = 2.837, t-ratio = 7.27) 

plays a critical role in representing Health Literacy. These results affirm the validity of the 

constructs and support their inclusion in the modeling framework. 

The measurement equation results highlight the demographic factors influencing 

Technology Trust. Being aged 30 or less is negatively associated with Technology Trust 

(estimate = -0.270, t-ratio = -1.56), though this relationship is not statistically significant. 

Conversely, being Black has a positive and statistically significant effect on Technology Trust 

(estimate = 0.313, t-ratio = 2.14). This suggests that racial identity may shape individuals’ 

confidence in automated technologies, potentially reflecting cultural or experiential differences. 

These insights underscore the nuanced demographic influences on Technology Trust, warranting 

further exploration. 

The measurement equation results for Health Literacy reveal notable demographic 

patterns. Being Middle-Aged (estimate = 0.491, t-ratio = 4.93) or a Senior (estimate = 1.075, t-

ratio = 5.24) is significantly associated with higher Health Literacy. This suggests that older 

individuals are better equipped to navigate healthcare processes, potentially due to accumulated 

life experience or exposure to medical systems. Additionally, having a high income is positively 

and significantly related to Health Literacy (estimate = 0.350, t-ratio = 1.96), reflecting the role 

of socioeconomic factors in accessing and understanding healthcare resources. These findings 
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emphasize the intersection of age and income in shaping individuals’ Health Literacy, 

highlighting areas for targeted interventions. 

Table 4.3 presents parameter estimates and robust t-ratios for the MNL and HDC models, 

examining factors influencing preferences for medical facility consultations (Hospital, TKB with 

AI (TKB-A), and TKB with Telemedicine (TKB-T)). Significant parameter estimates (indicated 

by robust t-ratios exceeding ±1.96) highlight key relationships between patient characteristics 

(e.g., age, time variables, health literacy, and technology trust) and their preferences for each 

consultation type. Comparing results across models provides insights into how additional latent 

concepts may refine our understanding of patient decision-making. 

For Hospital consultations, both models demonstrate consistent findings. Time-related 

variables are significant for younger, School-Aged, and Middle-Aged cohorts, with positive 

coefficients indicating that these groups prefer hospital visits as travel time increases. 

Interestingly, the Senior cohort also shows significant preferences for hospitals as travel time 

increases, albeit to a lesser extent. These results suggest that traditional hospital consultations 

remain particularly appealing across age groups as travel time increases. The slightly lower 

intercept in the HDC model (-1.268) compared to the MNL model (-1.287) suggests that 

accounting for hierarchical dependencies slightly reduces the baseline disutility of hospital 

consultations. 
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Table 4.3 MNL and HDC Model Estimates for Factors Influencing Medical Facility Choice 

Variable 
MNL Model  HDC Model 

Estimate Rob. t-ratio  Estimate Rob. t-ratio 
Consult: Hospital 
Intercept -1.287 -16.09  -1.268 -15.81 
Time × School Age 0.057 12.27  0.056 12.33 
Time × Young 
Adult 

0.053 9.57  0.055 9.96 

Time × Middle Age 0.045 9.86  0.044 9.65 
Time × Senior 0.045 6.97  0.046 7.21 
Consult: TKB-T 
Intercept -0.153 -4.22  -0.173 -3.16 
Time × School Age -0.029 -7.22  -0.029 -7.30 
Time × Young 
Adult 

0.006 1.24  0.007 1.55 

Time × Middle Age 0.006 1.67  0.005 1.34 
Time × Senior -0.002 -0.37  -0.003 -0.47 
Technology Trust - -  0.178 3.54 
Health Literacy - -  0.054 1.09 
Consult: TKB-A 
Intercept -1.040 -15.64  -0.996 -8.55 
Time × School Age -0.031 -6.09  -0.032 -6.14 
Time × Young 
Adult 

-0.019 -2.34  -0.018 -2.12 

Time × Middle Age -0.010 -2.43  -0.011 -2.63 
Time × Senior -0.004 -0.46  -0.002 -0.20 
Technology Trust - -  0.716 5.84 
Health Literacy - -  -0.199 -1.48 
Panel Effect 0.561 13.44  0.433 9.79 

 

TKB-T results reveal significant differences in preferences across age groups. The 

negative coefficient for School-Aged and Middle-Aged cohorts reflects a declining preference 

for TKB-T as travel time increases, particularly in the MNL model. In contrast, the HDC model 

adjusts these effects, slightly reducing the magnitude of disutility. The significant positive 

coefficient for Health Literacy (HDC model, estimate = 0.054, t-ratio = 1.09) underscores the 

role of individual capabilities in shaping telemedicine adoption. However, the low t-ratio for 

Health Literacy in the MNL model indicates variability in its influence depending on the 

modeling structure. 



60 

 

For TKB-A (a TKB with AI-based consultations), younger and middle-aged cohorts 

exhibit a slight aversion to this option as travel time increases, with negative coefficients in both 

models. Seniors show neutral preferences for TKB-A across time variables, perhaps highlighting 

their limited engagement with such technologies. Technology Trust, only included in the HDC 

model, significantly influences TKB-A preferences (estimate = 0.716, t-ratio = 4.86). This result 

emphasizes the importance of dispositional trust in driving adoption of cutting-edge, automated 

healthcare technologies, especially among younger cohorts. 

Across the three consultation types, younger cohorts (School-Aged and Young Adults) 

exhibit a strong preference for hospital-based care, with significant positive coefficients for time 

variables. Middle-Aged patients show a mixed pattern, favoring hospitals but exhibiting 

declining preferences for telemedicine and AI consultations as travel time increases. Seniors 

consistently prefer hospital consultations but demonstrate neutral attitudes toward telemedicine 

and AI options, likely reflecting comfort with traditional systems and limited exposure to 

emerging technologies. The positive influence of Health Literacy and Technology Trust on 

telemedicine and AI adoption, respectively, suggests that addressing these factors could expand 

acceptance among Middle-Aged and Senior patients. This highlights the need for targeted 

interventions, such as training or familiarization programs, to bridge the gap in technology 

adoption across age groups. 

4.5.1 Case Study Travel Time Decay Models 

Based on the survey responses, utility equations (travel time decay function) for 

willingness to visit a TKB equipped with telehealth, 𝑈𝑈𝑇𝑇; a TKB equipped with artificial 

intelligence (AI), 𝑈𝑈𝐴𝐴; and a Hospital, 𝑈𝑈𝐻𝐻 were derived as follows:   

𝑈𝑈𝑇𝑇(𝑡𝑡) = 1.23759 − 𝑡𝑡(0.08392𝐼𝐼𝐶𝐶 + 0.06375𝐼𝐼𝑌𝑌 + 0.067𝐼𝐼𝑀𝑀 + 0.07124𝐼𝐼𝑆𝑆) (4.5) 
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𝑈𝑈𝐴𝐴(𝑡𝑡) = −0.15241 − 𝑡𝑡(0.11187𝐼𝐼𝐶𝐶 + 0.08519𝐼𝐼𝑌𝑌 + 0.07831𝐼𝐼𝑀𝑀 + 0.06559𝐼𝐼𝑆𝑆) (4.6) 

𝑈𝑈𝐻𝐻(𝑡𝑡) = 0.73532 − 𝑡𝑡(0.02603𝐼𝐼𝐶𝐶 + 0.02932𝐼𝐼𝑌𝑌 + 0.03398𝐼𝐼𝑀𝑀 + 0.02507𝐼𝐼𝑆𝑆) (4.7) 

In these equations, the binary indicator 𝐼𝐼∗ determines the age group, where 𝐶𝐶 𝑖𝑖ndicates 

School Age, 𝑌𝑌 indicates Young Adult, 𝑀𝑀 indicates Middle-Aged adults and 𝑆𝑆 indicates Seniors. 

From these utility values, for each age group the willingness to use a TKB (with either 

Telemedicine consultation or AI consultation) for a potential TKB user located at travel time 

𝑡𝑡 from the TKB (a probability for that age group) is given by  

𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) =
𝑒𝑒𝑈𝑈𝑇𝑇(𝑡𝑡) + 𝑒𝑒𝑈𝑈𝐴𝐴(𝑡𝑡)

𝑒𝑒𝑈𝑈𝑇𝑇(𝑡𝑡) + 𝑒𝑒𝑈𝑈𝐴𝐴(𝑡𝑡) + 𝑒𝑒𝑈𝑈𝐻𝐻(𝑡𝑡) (4.8) 

This provides four separate continuous functions for the likelihood of each age group to use a 

TKB based on the travel time to the TKB. 

As this functional form (equation 4.8) can be non-intuitive for practitioners, we elected to 

use corresponding three-piece piecewise linear functions for each age group with catchment 

areas of 0-30 minutes, 30-60 minutes and 60-90 minutes. To define these, we fit a three-piece 

piecewise linear function to 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) as follows. First, for 𝑡𝑡 = 0 to 𝑡𝑡 = 30, we found the best fit 

line segment using LINEST in Excel, with 𝑡𝑡 in one-minute increments. Then, for the pieces from 

𝑡𝑡 = 30 to 𝑡𝑡 = 60 and from 𝑡𝑡 = 60 to 𝑡𝑡 = 90, we solved the nonlinear problems using Excel 

Solver to maximize the sum of the 𝑅𝑅2 values for the two pieces using one-minute increments, 

while ensuring that the second piece joined the first at 𝑡𝑡 = 30, and the third piece joined the 

second at 𝑡𝑡 = 60. The slope and intercept for the resulting piecewise linear functions for each 

age group are shown in Table 4.4. This table also shows the 𝑅𝑅2 values which verify the good fit 

between the piecewise linear functions and equation 4.8. Figure 4.3 plots the travel time decay 

functions from equation 4.8, while Figure 4.4 shows the corresponding piecewise linear 

functions (from Table 4.4). The travel time decay functions used in this study are based on a 
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representative sample of US adults, capturing how their willingness to access healthcare services 

diminishes as travel time increases. These empirically derived functions provide a realistic 

foundation for understanding patient behavior in rural healthcare contexts. In Chapters 5 and 6, 

we apply these decay functions to our rural Missouri case study data, modeling the deployment 

of TKBs in rural US regions.  

 

Table 4.4 Piecewise linear travel time decay functions for case studies in Missouri. 

 
Age Group 

 
slope 

 
intercept 

Lower catchment 
time limit 

Upper catchment 
time limit 

 
𝑹𝑹𝟐𝟐 

Senior -0.010971 0.67654 0 30 0.9999 

 -0.0078478 0.58283 30 60 0.9783 

 -0.0027619 0.27768 60 90 0.9820 

Middle Age -0.0085400 0.67639 0 30 0.9998 

 -0.0074843 0.64472 30 60 0.9931 

 -0.0039186 0.43078 60 90 0.9911 

Young 

Adult 

-0.0092220 0.67574 0 30 0.9999 

-0.0075098 0.62438 30 60 0.9909 

 -0.0036109 0.39044 60 90 0.9895 

School Age -0.014661 0.67105 0 30 0.9988 

 -0.0062650 0.41916 30 60 0.9052 

 -0.0012694 0.11943 60 90 0.9509 
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Figure 4.3 Travel time decay functions for case studies from equation 4.8. 

 

 

Figure 4.4 Piecewise linear travel time decay functions for case studies. 
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4.6 Concluding Remarks 

This chapter presented empirical evidence on the factors influencing individuals' 

decisions when selecting medical facilities, highlighting the roles of personal characteristics, 

dispositional traits, and contextual variables. By examining Technology Trust and Health 

Literacy alongside facility attributes such as consultation type and travel time, this research 

provides a nuanced understanding of how patient preferences evolve within complex healthcare 

delivery systems. 

The findings show that Technology Trust significantly influences the adoption of modern 

consultation modes, such as telemedicine and AI-based healthcare services. Individuals with 

higher trust in automated systems are more likely to adopt these innovations, perceiving them as 

reliable and efficient, whereas skepticism toward technology remains a barrier, particularly 

among older individuals and those with limited exposure to technology. These insights highlight 

the need for initiatives to build trust in technology, especially within AI-driven healthcare. 

Similarly, Health Literacy emerged as a critical enabler for technology-enabled 

healthcare access. Higher health literacy was associated with greater willingness to adopt 

telemedicine services, suggesting that familiarity with healthcare processes empowers patients to 

make informed choices and overcome barriers to adopting innovative solutions. 

Demographic analysis revealed notable variations across age cohorts. Younger and 

Middle-Aged individuals showed stronger preferences for hospital-based care, while Seniors 

demonstrated limited engagement with telemedicine and AI options. These differences reflect the 

influence of familiarity, comfort, and trust in shaping healthcare preferences. Interventions such 

as training programs or simplified interfaces could bridge the generational gap in technology 

adoption and promote equitable access. 
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In summary, this chapter underscores the interplay of trust, literacy, and demographics in 

shaping healthcare preferences. Addressing disparities in Technology Trust and Health Literacy 

is essential to ensuring inclusive access as healthcare systems increasingly integrate advanced 

technologies. Furthermore, this chapter develops realistic travel time decay functions through 

comprehensive analyses of patient behavior and accessibility patterns. By leveraging data from a 

representative sample of US adults, the chapter captures how the likelihood of accessing 

healthcare services decreases with increasing travel time. These functions provide an empirical 

basis for modeling healthcare access, ensuring that subsequent analyses reflect realistic 

behavioral responses to travel distances. 
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Chapter 5 Continuous Modeling 

This chapter presents a strategic analysis aimed at evaluating the impacts on healthcare 

access in rural regions from deploying a network of publicly accessible telehealth kiosks/booths 

(TKBs). By bringing healthcare services closer to patients, strategically located TKBs have the 

potential to significantly improve health outcomes. We employ data-driven, analytical 

continuous approximation models to examine travel times, distances, coverage, and accessibility 

metrics for rural residents accessing TKBs. A key practical challenge addressed in this research 

is accurately modeling the "travel time decay" effect, which reflects the decreasing likelihood of 

individuals using a healthcare facility as travel time or distance increases. While much of the 

existing research on healthcare accessibility assumes a specific form of travel time decay, our 

approach uses both general decay models that capture different degrees of sensitivity to travel 

time, as well as decay models derived using empirical data from surveys and discrete choice 

experiments to capture people’s willingness to travel to TKBs for healthcare services (see 

Chapter 4). The analysis in this chapter includes general findings as well as case studies specific 

to rural Missouri. 

The primary contributions of this research are fourfold: (i) assessing the potential benefits 

of TKBs in enhancing healthcare access, (ii) examining how system performance measures 

evolve with varying numbers of TKBs, (iii) evaluating the sensitivity of system performance to 

different travel time decay behaviors, and (iv) analyzing how system performance is influenced 

by the availability of existing healthcare facilities. Additionally, the study offers managerial 

insights for effectively utilizing a network of TKBs in rural settings. 

To achieve these objectives, we develop continuous approximation (CA) models that 

facilitate strategic evaluation of various deployment options and configurations. The analysis 
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investigates the effects of several operational factors, including patient density, travel time 

decay, and the number of existing healthcare facilities, to provide a more comprehensive 

understanding of the potential for TKBs to address healthcare access in rural areas. The 

remainder of the chapter is organized as follows. Section 5.1 develops the continuous 

approximation models for transportation access and equity with TKBs. Section 5.2 provides 

general results for a variety of different scenarios. Section 5.3 provides results on case studies for 

two regions in Missouri as described in Chapter 3.  Section 5.4 includes the conclusions of the 

research.  

5.1 Methodology/Continuous Approximation Models 

This section presents continuous approximation (CA) models to evaluate the deployment 

of a network of TKBs serving rural residents across a geographic region. CA modeling is 

particularly effective for identifying key trade-offs and relationships among design parameters 

and has been widely applied in the analysis of logistics and transportation systems (Janjevic et 

al., 2021; Ansari et al., 2018; Franceschetti et al., 2017; Langevin et al., 1996). The approach 

models demand for services, such as visiting a TKB, as a continuous density distributed over the 

region (e.g., potential TKB users per square mile). Expected transportation times and distances 

are calculated using geometric probability, providing insights into accessibility and equity for 

varying numbers of TKBs. These models help reveal trade-offs and dependencies through both 

analytical and numerical methods. 

Previous research has demonstrated that the geometry of a service region has minimal 

impact on logistics costs, provided the region is not excessively elongated (Ansari et al., 2018; 

Daganzo & Newell, 1986). Although CA models are best suited for large-scale systems with 

gradually changing conditions, studies have shown that this approach can yield valuable 
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managerial insights and approximations with high accuracy (within a few percentage points) 

even when these conditions are partially violated (Cui et al., 2010). 

In our modeling, rural residents (potential TKB users) are assumed to be distributed 

across a compact rural service region with area A, characterized by a density δ of potential users 

per unit area and per unit time (e.g., per day or per year). This density is modeled as a continuous 

function that varies smoothly across the region. The objective is to design a system of TKBs that 

maximizes accessibility, with a particular focus on travel to and from the kiosks. 

The section begins by presenting a continuous approximation model for the Accessibility 

Index, which accounts for the coverage of patients by multiple TKBs. Subsequently, we explore 

CA models that assume patients are served by the nearest TKB and evaluate key performance 

measures of healthcare access. This analysis provides a structured framework for optimizing the 

deployment of TKBs to enhance accessibility and equity in rural areas. 

5.1.1 A CA Model for the Accessibility Index 

In healthcare modeling, accessibility is often defined from the patient perspective using 

the Accessibility Index from the two-step floating catchment model (2SFCA). For a discrete set 

of facilities and patient sites, the Accessibility Index for site 𝑖𝑖, 𝐴𝐴𝑖𝑖 was defined (Luo and Wang 

2003) as 

𝐴𝐴𝑖𝑖 = � 𝑅𝑅𝑗𝑗
𝑗𝑗 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖

= �
𝑆𝑆𝑗𝑗
𝑃𝑃𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖

 (5.1) 

where 𝑆𝑆𝑗𝑗 is the “supply” of healthcare at facility 𝑗𝑗 and 𝑃𝑃𝑗𝑗 is the population served from facility j, 

as determined by the catchment for facility j. The term 𝑅𝑅𝑗𝑗 is effectively a ratio of providers (or 

provider capacity) to population for facility site 𝑗𝑗, and it relies on the specified catchment of 

facility 𝑗𝑗. Because a patient site may be in the catchment area for several facilities, that patient 
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site can be entered into the calculation for several 𝑅𝑅𝑗𝑗’s. The Accessibility Index for patient site 

𝑖𝑖 includes the 𝑅𝑅𝑗𝑗 values for all provider facilities within the catchment of patient site 𝑖𝑖. In a 

discrete model, each patient site is a town, and each provider site is a facility (a TKB in our 

case).  

For a continuous approximation approach with a uniform density of potential patients and 

provider sites, the concept is the same with facility 𝑗𝑗’s catchment assumed to be a circular region 

around the facility. Likewise, a potential patient has a circular catchment area that indicates the 

facilities (TKBs) they may visit. To develop a continuous approximation version of the basic 

2SFCA model, we assume there are 𝑘𝑘 identical TKBs and the catchment of each TKB is a 

circular region of radius 𝑟𝑟 (miles) that corresponds to how far potential patients are willing to 

travel to a TKB. Thus, the area served by each TKB is 𝜋𝜋𝑟𝑟2. To formulate the model of 

accessibility we introduce the notion of “𝑖𝑖-cover”, where a patent is “𝑖𝑖-covered” if they are in the 

catchments of 𝑖𝑖 different TKBs. Thus, 0-cover corresponds to a potential patient (or a region) not 

within distance 𝑟𝑟 of any TKBs, and 2-cover is for potential patients (regions) within distance 𝑟𝑟 of 

exactly 2 TKBs. With some TKBs there may be regions that are 0-covered, but with many TKBs 

the entire region can be covered and many subregions would have several (or many) TKBs 

within distance 𝑟𝑟. Let 𝑁𝑁𝐿𝐿 be the smallest number of TKBs needed to provide a coverage area 

totaling at least 𝐴𝐴, so that  

𝑁𝑁𝐿𝐿 = �
𝐴𝐴
𝜋𝜋𝑟𝑟2

� (5.2) 

In this analysis, we approximate hexagons, which are space-filling shapes, with circles for 

simplicity. While circles do not tessellate perfectly, they serve as a close approximation for 

hexagons when analyzing distances and catchment areas. Notably, circles and hexagons with 

equivalent areas yield nearly identical expected distances. The difference in expected distances, 
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whether between two random points or between the center and a random point within the shape, 

is minimal—less than 0.3% (Stone 1991). This approximation allows for a more straightforward 

derivation of results without significant loss of accuracy.  

For 𝑘𝑘 < 𝑁𝑁𝐿𝐿, with no overlap of the TKB catchments, then the fraction of potential 

patients 1-covered, i.e., those within the catchment of a TKB is denoted 𝑓𝑓1 and given by  

𝑓𝑓1 =
𝑘𝑘𝑘𝑘𝑟𝑟2

𝐴𝐴
 (5.3) 

and the fraction 0-covered is 

𝑓𝑓0 = 1 −
𝑘𝑘𝑘𝑘𝑟𝑟2

𝐴𝐴
 (5.4) 

For � 𝐴𝐴
𝜋𝜋𝑟𝑟2

� ≤ 𝑘𝑘 < �2 𝐴𝐴
𝜋𝜋𝑟𝑟2

�, to provide more equitable access to a TKB we assume that the TKBs 

are distributed “evenly” across the region so that all covered subregions are 1-covered and none 

are 2-covered. In general, for �𝑖𝑖 𝐴𝐴
𝜋𝜋𝑟𝑟2

� ≤ 𝑘𝑘 < �(𝑖𝑖 + 1) 𝐴𝐴
𝜋𝜋𝑟𝑟2

�, there will only be subregions that are 𝑖𝑖-

covered and (𝑖𝑖 + 1)-covered. For example, if 𝐴𝐴 = 3000 square miles and 𝑟𝑟 = 10 miles, then 

𝑁𝑁𝐿𝐿 = ⌈9.55⌉ = 10, so for 𝑘𝑘 = 1, 2, … 9 there is 0-coverage and 1-coverage, while for 𝑘𝑘 =

10, 11, 12 … 19 there is 1-coverage and 2-coverage (note that 1-coverage ends with 𝑘𝑘 < 𝑁𝑁𝐿𝐿 =

�2 𝐴𝐴
𝜋𝜋𝑟𝑟2

� = 20) , for 𝑘𝑘 = 20, 21, … 28 there is 2-coverage and 3-coverage, etc. We can then write 

the high level of coverage in terms of 𝑘𝑘 as 

𝑐𝑐1(𝑘𝑘) = �𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
� (5.5) 

and the low level of coverage as 

𝑐𝑐2(𝑘𝑘) = �𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
� − 1 = �𝑘𝑘

𝜋𝜋𝑟𝑟2

𝐴𝐴
�. (5.6) 
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Further, the fraction of potential patients (or of the region) with the high level of coverage is  

𝑓𝑓1(𝑘𝑘) = 𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
− �𝑘𝑘

𝜋𝜋𝑟𝑟2

𝐴𝐴
� (5.7) 

and the fraction of potential patients (or of the region) with the low level of coverage is  

𝑓𝑓2(𝑘𝑘) = �𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
� − 𝑘𝑘

𝜋𝜋𝑟𝑟2

𝐴𝐴
 (5.8) 

Let the “supply” for a TKB be 𝑆𝑆 units in equation (5.1), so the 𝑅𝑅𝑗𝑗  values are 𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

 for each 

TKB and the Accessibility Index with 𝑘𝑘 TKBs in the continuous approximation model, denoted 

𝐴𝐴𝐴𝐴(𝑘𝑘), is  

𝐴𝐴𝐴𝐴(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝐼𝐼1(𝑘𝑘) = �𝑘𝑘

𝜋𝜋𝑟𝑟2

𝐴𝐴
�  

𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

    

𝐴𝐴𝐼𝐼2(𝑘𝑘) = � �𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
� − 1�  

𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

 

For high level of coverage (5.9)a 

For low level of coverage (5.9)b 

Clearly, as 𝑘𝑘 increases the accessibility index increases (as expected), yet the range of 

accessibility indices (maximum minus minimum) in this model stays the same at 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑆𝑆

𝛿𝛿𝛿𝛿𝑟𝑟2
 (5.10) 

We can compute the average accessibility index 𝐴̅𝐴(𝑘𝑘) across the service region using the fraction 

of potential patients (or the region) with the different levels of coverage 𝑓𝑓𝑖𝑖(𝑘𝑘) as 

𝐴𝐴𝐴𝐴���(𝑘𝑘) = � 𝐴𝐴𝐼𝐼𝑖𝑖(𝑘𝑘)𝑓𝑓𝑖𝑖(𝑘𝑘)
2

𝑖𝑖=1
=

𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

𝑘𝑘
𝜋𝜋𝑟𝑟2

𝐴𝐴
=
𝑘𝑘𝑘𝑘
𝛿𝛿𝛿𝛿

 (5.11) 

Note that when the patient population and the TKBs are continuously and evenly distributed over 

the region, the Accessibility Index has one of two values across the service region for a given 

number of TKBs.  

Figure 5.1 plots the average accessibility 𝐴𝐴𝐴𝐴���(𝑘𝑘) as a function of the number of TKBs for 

an example with 𝐴𝐴 = 3000, 𝑟𝑟 = 10, 𝛿𝛿 = 1 and 𝑆𝑆 = 1. This shows the linear increase in average 



72 

 

accessibility index with each added TKB. While the high and low levels of the accessibility 

index are a step function, the average is a linear function as the proportion of patients subject to 

the high and low levels changes with each added TKB.   

We assumed the TKBs were spread across the service region to achieve equity, but an 

alternative (extreme) approach would concentrate the TKBs in the same location. From the 

perspective of the accessibility index, this would increase the accessibility index for a small 

number of potential patients (i.e., a small part of the service region) as k increases, with 𝐴𝐴𝐴𝐴(𝑘𝑘) =

𝑘𝑘 𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

 for the covered region which is a fraction 𝜋𝜋𝑟𝑟
2

𝐴𝐴
 of the potential patients (and region), and 

𝐴𝐴𝐴𝐴(𝑘𝑘) = 0 everywhere else. The average accessibility index would then be 𝑘𝑘𝑘𝑘
𝛿𝛿𝛿𝛿

, the same as 

equation (5.11) for an evenly distributed set of TKBs. However, equity, as measured by the 

range of the accessibility indices, would be 𝑘𝑘𝑘𝑘
𝛿𝛿𝛿𝛿𝑟𝑟2

, in contrast to the constant range of 𝑆𝑆
𝛿𝛿𝛿𝛿𝑟𝑟2

 

(equation 5.10) for the evenly distributed TKBs.  

 

 

Figure 5.1 Accessibility Index as the number of TKBs increases 

0.000

0.002

0.004

0.006

0.008

0.010

0 5 10 15 20 25 30

AI

Number of TKBs

Average AI

AI-Lo

AI-Hi



73 

 

The accessibility index model described above accounts for multiple coverages, capturing 

the overlap of catchment areas where potential patients may access multiple facilities. However, 

it does not explicitly determine which TKB a patient would choose to visit. To address this, the 

subsequent analysis focuses on models where potential patients are assumed to travel to their 

nearest TKB. This allows us to evaluate performance measures specifically related to travel 

times and distances, providing a more precise assessment of accessibility and equity. 

5.1.2 CA Models for Travel Time with Travel Time Decay  

With 𝑘𝑘 TKBs located in the service region of area 𝐴𝐴, we model service by assuming that 

TKBs are uniformly distributed across the service region, and that potential patients travel to the 

closest TKB (shortest travel time), but not farther than a travel time of 𝑇𝑇 to reach a TKB. We let 

𝑣𝑣 be the average speed for patient travel and use 𝛼𝛼 > 1 as the circuity factor to reflect the sparse 

nature of rural road networks. Thus, a straight-line distance of 𝑑𝑑 implies an average road travel 

distance of 𝛼𝛼𝛼𝛼 and an average travel time of 𝛼𝛼𝛼𝛼
𝑣𝑣

 .  Each TKB is modeled as serving the potential 

patients closest to it; i.e., within its catchment defined as a circular region of radius 

𝑟𝑟max(𝑘𝑘) = min��
𝐴𝐴
𝑘𝑘𝑘𝑘

,
𝑣𝑣
𝛼𝛼
𝑇𝑇� (5.12) 

The corresponding maximum travel time is given by 

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) = min�
𝛼𝛼
𝑣𝑣
� 𝐴𝐴
𝑘𝑘𝑘𝑘

,𝑇𝑇� (5.13) 

This approach divides the overall service region, with a total area A, into multiple subregions, 

each assigned to a single TKB at most. When there are not enough TKBs to cover the entire 

service region, i.e., when 𝑘𝑘 < 𝐴𝐴
𝜋𝜋𝑇𝑇2

�𝛼𝛼
𝑣𝑣
�
2

, then each TKB serves potential patients up to distance 
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𝑣𝑣
𝛼𝛼
𝑇𝑇 (i.e., for travel time 𝑇𝑇), and some potential patients in the service region are too far from a 

TKB to be served. On the other hand, with enough TKBs, i.e. when 𝑘𝑘 ≥ 𝐴𝐴
𝜋𝜋𝑇𝑇2

�𝛼𝛼
𝑣𝑣
�
2

, then all 

potential patients are less than travel time 𝑇𝑇 from a TKB. In this case, each TKB is modeled as 

serving potential patients up to a distance � 𝐴𝐴
𝑘𝑘𝑘𝑘

 , which corresponds to travel time  𝛼𝛼
𝑣𝑣
� 𝐴𝐴
𝑘𝑘𝑘𝑘

. Thus, as 

𝑘𝑘 increases (more TKBs), the maximum (and average) travel time for potential patients 

decreases. 

We note that the spatial density of 𝛿𝛿 potential TKB users per square mile can also be 

viewed in terms of the travel time. With an average speed of 𝑣𝑣 mph and a circuity factor of 𝛼𝛼, the 

spatial density per hour of travel is 

𝛿𝛿′ = 𝛿𝛿 �
𝑣𝑣
𝛼𝛼
�
2
 (5.14) 

potential TKB users per hour of travel squared. If speed 𝑣𝑣 is measured in miles per hour and 

travel time is measured in minutes, then this is 

𝛿𝛿′ = 𝛿𝛿 �
𝑣𝑣

60𝛼𝛼
�
2
 (5.15) 

For example, if 𝛿𝛿 = 10 potential TKB users per square mile, 𝑣𝑣 = 30 mph, and 𝛼𝛼 = 1.4, then 

𝛿𝛿′ = 4591.84 potential TKB users per hour of travel squared. In one hour of travel a user covers 

30 miles which takes them 30
1.4

= 21.43 miles from their starting point due to the road circuity. 

Thus, we can view the density of potential TKB users in terms of either the geographic area 

using 𝛿𝛿 or in terms of travel time using 𝛿𝛿′.  

Healthcare accessibility is strongly influenced by the distance patients must travel, 

making the inclusion of a travel time decay function a critical component of our model. A wide 

variety of travel time decay functions have been presented in the literature. Figure 5.2 shows a 
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continuous exponential function approximated by a 3-step step function that models a situation 

where 65% of residents within 30 minutes of a facility visit the facility, 30% of residents 

between 30-60 minutes travel from a facility visit the facility, 15% of residents between 60-90 

minutes travel from a facility visit the facility, and no one travels more than 90 minutes to access 

the facility.  

Using a travel time decay function requires calibrating the relevant parameters. For step 

functions, this involves determining the step levels and the corresponding catchment limits. 

Continuous decay functions, on the other hand, necessitate one or more "impedance" parameters, 

along with defining a maximum distance or time (the catchment limit). Calibrating continuous 

models can be challenging, as it often demands extensive data collection and may be difficult for 

stakeholders, such as patients or healthcare providers, to interpret. Additionally, the appropriate 

functional form is not always clear, as many different forms can be fitted to a given dataset. 

 

 

Figure 5.2 A continuous exponential function approximated by a 3-step step function 
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However, any continuous function can be approximated using either a piecewise linear 

function or a step function, both of which tend to be more straightforward for users to 

understand. Step decay functions in particular are relatively simple to calibrate when 

stakeholders (e.g., through focus groups or surveys) can provide estimates for step levels and 

catchment distances or travel times. Similarly, piecewise linear decay functions with only a few 

segments are easier to calibrate and interpret. For these reasons, we focus on step functions and 

piecewise linear functions in the subsequent modeling to represent travel time decay. 

We first derive some connections between these two models. Let 𝐹𝐹(𝑡𝑡) be a continuous 

function of travel time 𝑡𝑡 that describes travel time decay. Thus, 𝐹𝐹(𝑡𝑡) is the likelihood for a 

potential TKB user to visit the TKB if they must travel time 𝑡𝑡 to the nearest TKB. While any 

continuous function can be closely approximated by a step function with numerous small steps, 

this approach risks introducing artificial precision, as it remains an approximation of inherently 

complex and variable patient behavior. Thus, we adopt a three-step step function as an 

approximation as that is able to capture a wide range of decay behavior while preserving 

managerial clarity for communication. We define this step function 𝑆𝑆(𝑡𝑡) for travel time 𝑡𝑡 using 

three catchment travel time limits 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3, where 𝑡𝑡3 = 𝑇𝑇, as follows:  

𝑆𝑆(𝑡𝑡) = �

𝑠𝑠1  for 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1
𝑠𝑠2  for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2

      𝑠𝑠3  for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3
0  for 𝑡𝑡3 < 𝑡𝑡

 (5.6) 

5.1.2.1 Converting a piecewise linear travel time decay to a step function.  

Suppose we are given the function 𝐹𝐹(𝑡𝑡) for a healthcare setting where patients travel to 

the closest facility and we wish to generate the corresponding step function 𝑆𝑆(𝑡𝑡). First, note that 

a good approximation requires the level of the steps to depend on the limits of the catchments. 

For example, in Figure 5.2 the farthest catchment extends to 90 minutes of travel, but if there are 
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enough TKBs in a region, then the farthest travel to a TKB may be less than the maximum 

catchment limit. Thus, if the farthest travel is 70 minutes, then the 3rd step in Figure 5.2 should 

be higher to more accurately model the situation. The appropriate level of the step then depends 

on the area each TKB serves, and hence the number of TKBs in use. Because our CA model of 

travel time decay is in 3-D space, the step function should be rotated around the origin (TKB), so 

the three steps are really three rings of different levels around the TKB location, as patients 

travel to the TKB from all directions.    

To determine the level of the steps that approximate the patient’s likelihood to travel to a 

TKB, we equate the population served by a particular step with the population served by the 

continuous function for the same range of travel times. Since 𝐹𝐹(𝑡𝑡) describes the travel time 

decay in all directions when traveling a time 𝑡𝑡 to the TKB, the total number of potential TKB 

users is ∫ 2𝜋𝜋𝜋𝜋𝛿𝛿′𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚{𝑡𝑡3,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)}
0 , where 𝛿𝛿′ is the spatial density of potential TKB users in 

terms of the travel time.  

Now we set the population served by the 𝑖𝑖𝑡𝑡ℎ step for 𝑖𝑖 = 1, 2, 3 equal to the population 

served by the continuous function for the same range of travel times. To simplify the notation, 

we set 𝑡𝑡𝑖𝑖′(𝑘𝑘) to be the upper limit of the travel time for catchment 𝑖𝑖, which is the minimum of the 

catchment limit and the maximum travel time from equation (5.13): 

𝑡𝑡𝑖𝑖′(𝑘𝑘) = min {𝑡𝑡𝑖𝑖, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)}   for 𝑖𝑖 = 1, 2, 3 (5.17) 

So, for all steps 𝑖𝑖 such that 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), where 𝑡𝑡0 = 0, we set  

� 2𝜋𝜋𝜋𝜋𝛿𝛿′𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑑𝑑 =
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1
� 2𝜋𝜋𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖 𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1
 (5.18) 
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Where 

∫ 2𝜋𝜋𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖 𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1
= 𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖[(𝑡𝑡𝑖𝑖′)2 − 𝑡𝑡𝑖𝑖−12 ] for 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) (5.19) 

The level for the step 𝑠𝑠𝑖𝑖 is then given by 

𝑠𝑠𝑖𝑖 =
2∫ 𝑡𝑡𝑡𝑡(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1

�𝑡𝑡𝑖𝑖
′(𝑘𝑘)�

2
−𝑡𝑡𝑖𝑖−1

2  for 𝑖𝑖  such that 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) (5.20) 

For any 𝑖𝑖 such that 𝑡𝑡𝑖𝑖−1 ≥ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), 𝑠𝑠𝑖𝑖 = 0 (i.e., there will be no potential TKB users).    

The three levels in the step function as calculated above depend on the function 𝐹𝐹(𝑡𝑡) and 

the catchment limits. Note that any continuous function can be approximated by linear pieces, so 

consider 𝐺𝐺(𝑡𝑡) to be the piecewise linear approximation to 𝐹𝐹(𝑡𝑡) as follows 

𝐺𝐺(𝑡𝑡) = �

𝑚𝑚1𝑡𝑡 + 𝑏𝑏1   for 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1
𝑚𝑚2𝑡𝑡 + 𝑏𝑏2   for 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2

      𝑚𝑚3𝑡𝑡 + 𝑏𝑏3   for 𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3
0            for 𝑡𝑡3 < 𝑡𝑡

 (5.21) 

One could set the slopes and intercepts (𝑚𝑚 and 𝑏𝑏 values) such that 𝐺𝐺(𝑡𝑡) is continuous, or it could 

be discontinuous.  

Consider the general case with a linear function 𝑚𝑚𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑖𝑖 for 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖. We set the 

level of a single step 𝑠𝑠𝑖𝑖 in the range 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖 such that the (ring) step includes the same 

number of potential TKB patients as the (ring) defined by the linear function  

� 2𝜋𝜋𝜋𝜋𝛿𝛿′(𝑚𝑚𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑖𝑖) 𝑑𝑑𝑑𝑑 =
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1
� 2𝜋𝜋𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖 𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1
 (5.22) 

which gives 

𝑠𝑠𝑖𝑖 = 𝑏𝑏𝑖𝑖 +
2𝑚𝑚𝑖𝑖

3
(𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13

(𝑡𝑡𝑖𝑖′(𝑘𝑘))2 − 𝑡𝑡𝑖𝑖−12 = 𝑏𝑏𝑖𝑖 +
2𝑚𝑚𝑖𝑖

3
(𝑡𝑡𝑖𝑖′(𝑘𝑘))2 + 𝑡𝑡𝑖𝑖′(𝑘𝑘)𝑡𝑡𝑖𝑖−1 + 𝑡𝑡𝑖𝑖−12

𝑡𝑡𝑖𝑖′(𝑘𝑘) + 𝑡𝑡𝑖𝑖−1
 (5.23) 

Note that because of the circular service region, the level of the step is not halfway 

between the endpoints of the linear function. For example, if 𝑡𝑡1 = 30, 𝑡𝑡2′ (𝑘𝑘) = 60, 𝑏𝑏2 = 1.2 and 
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𝑚𝑚2 =  −1/60, then the level of the step is 𝑠𝑠2  =  0.4222 (42.22%). The values of 𝐺𝐺(𝑡𝑡) at the 

endpoints of the line segment are 0.7 (70%) and 0.2 (20%), so the step likelihood is slightly 

lower than the midpoint likelihood at 45%. For the same linear function, if the step range was 

shorter (due to a shorter farthest travel time from having more TKBs), then a higher step is used; 

for example, if 𝑡𝑡1 = 30, 𝑡𝑡2′ (𝑘𝑘) = 45, 𝑏𝑏2 = 1.2 and 𝑚𝑚2 = −1/60, then the level of the step is 

𝑠𝑠2  =  0.5667 (56.67%).  

This modeling of the step function allows the number of potential TKB users for each 

step in the step function to match the number of potential TKB users for each piece of a 

piecewise linear function as the service region varies with the number of TKBs in the region. 

When more TKBs are in a region, the maximum travel time to the closet TKB (i.e., 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)) 

decreases, thereby effectively cutting off the right side of Figure 5.2. For example, if enough 

TKBs are located so that the maximum travel time to a TKB is 45 minutes, then the 3rd 

catchment area (from 60-90 minutes) is no longer relevant and the TKB users would come from 

the two catchment areas from 0-30 minutes and from 30-45 minutes.     

5.1.2.2 Converting a step travel time decay function to a piecewise linear function  

Suppose instead of knowing a piecewise linear travel time decay function, we are given 

(e.g., by stakeholders) a set of three step levels (likelihood of patronizing a TKB) 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3 

corresponding to three travel time ranges defined by catchment travel time limits 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 

(i.e., 𝑆𝑆(𝑡𝑡)). Suppose we are also given a maximum patronage level 𝑏𝑏1, effectively corresponding 

to a travel time of zero. We wish to derive a continuous piecewise linear function 𝐺𝐺(𝑡𝑡) that 

matches this step function in terms of the demand captured by each catchment level. We do this 

iteratively, starting with the first step (𝑖𝑖 = 1). For each step we determine the linear segment 

corresponding to the same number of potential TKB users as for the step.  
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To equate the population served by the first step with the population served by a linear 

function of slope 𝑚𝑚1 and intercept 𝑏𝑏1, we solve the following to determine 𝑚𝑚1: 

� 2𝜋𝜋𝜋𝜋𝛿𝛿′(𝑚𝑚1𝑡𝑡 + 𝑏𝑏1) 𝑑𝑑𝑑𝑑 =
𝑡𝑡1

0
� 2𝜋𝜋𝜋𝜋𝛿𝛿′𝑠𝑠1 𝑑𝑑𝑑𝑑
𝑡𝑡1

0
 (5.24) 

This gives  

𝑚𝑚1 =
3
2

(𝑠𝑠1 − 𝑏𝑏1)
1
𝑡𝑡1

 (5.25) 

To make the piecewise linear function continuous, we set the right endpoint of piece 𝑖𝑖 −

1 equal to the left endpoint of piece 𝑖𝑖, so that   

𝑚𝑚𝑖𝑖−1𝑡𝑡𝑖𝑖−1 + 𝑏𝑏𝑖𝑖−1 = 𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖−1 + 𝑏𝑏𝑖𝑖 (5.26) 

This allows 𝑏𝑏𝑖𝑖 to be expressed in terms of the known slope and intercept for piece 𝑖𝑖 − 1 

and the unknown slope for piece 𝑖𝑖    

𝑏𝑏𝑖𝑖 = −𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖−1 + 𝑚𝑚𝑖𝑖−1𝑡𝑡𝑖𝑖−1 + 𝑏𝑏𝑖𝑖−1 (5.27) 

For the slopes of the second and subsequent pieces of the piecewise linear function, 𝑚𝑚𝑖𝑖 

for 𝑖𝑖 = 2, 3, we set the population served by the step of level 𝑠𝑠𝑖𝑖 equal with the population served 

by a linear function of slope 𝑚𝑚𝑖𝑖 and intercept 𝑏𝑏𝑖𝑖: 

∫ 2𝜋𝜋𝜋𝜋𝛿𝛿′(𝑚𝑚𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑖𝑖) 𝑑𝑑𝑑𝑑 =𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

∫ 2𝜋𝜋𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖 𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

 for 𝑖𝑖 = 2, 3 (5.28) 

Substituting 𝑏𝑏𝑖𝑖 from equation (5.27) into equation (5.28) and solving for 𝑚𝑚𝑖𝑖 gives 

𝑚𝑚𝑖𝑖 =
�𝑡𝑡𝑖𝑖
2−𝑡𝑡𝑖𝑖−1

2 ��
𝑠𝑠𝑖𝑖
2−

𝑏𝑏𝑖𝑖−1
2 −

𝑚𝑚𝑖𝑖−1
2 𝑡𝑡𝑖𝑖−1�

1
3�𝑡𝑡𝑖𝑖

3−𝑡𝑡𝑖𝑖−1
3 �−12𝑡𝑡𝑖𝑖−1�𝑡𝑡𝑖𝑖

2−𝑡𝑡𝑖𝑖−1
2 �

 for 𝑖𝑖 = 2, 3 (5.29) 

This allows 𝑚𝑚𝑖𝑖 to be calculated based only on the known step level 𝑠𝑠𝑖𝑖, the previously 

calculated line segment (i.e., 𝑚𝑚𝑖𝑖−1 and 𝑏𝑏𝑖𝑖−1) and the known catchment limits. Thus, given the 

initial level 𝑏𝑏1 along with the step function 𝑆𝑆(𝑡𝑡) (i.e., the pairs 𝑠𝑠𝑖𝑖 and 𝑡𝑡𝑖𝑖), equations (5.25), (5.29) 

and (5.27) can be used iteratively to calculate each piece of the piecewise linear function 𝐺𝐺(𝑡𝑡).  
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For example, suppose the step function has three levels of 𝑠𝑠1 = 0.8, 𝑠𝑠2 = 0.4, and 𝑠𝑠3 =

0.1 for 30-, 60-, and 90-minute catchments and 𝑏𝑏1 = 0.9 (maximum likelihood to visit a TKB is 

90%). The corresponding piecewise linear function is 

𝐺𝐺(𝑡𝑡) = �
−0.005𝑡𝑡 + 0.9       for  0 ≤ 𝑡𝑡 ≤ 30 minutes
−0.021𝑡𝑡 + 1.38     for 30 < 𝑡𝑡 ≤ 60 minutes

      −0.0012𝑡𝑡 + 0.19   for 60 < 𝑡𝑡 ≤ 90 minutes
0                           for 𝑡𝑡 > 90 minutes

 (5.30) 

The step function with steps at 0.8, 0.4 and 0.1 and the corresponding piecewise linear 

function are shown in Figure 5.3. The above equations provide a way to construct matching 

travel time decay functions in the form of a step function and a piecewise linear function. If we 

are given one function (e.g., based on empirical data) we can construct the other. We consider 

both a piecewise linear function and a step function to model travel time decay. 

 

 

Figure 5.3 Step function and corresponding piecewise linear function. 
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• Piecewise linear (𝐿𝐿) – the function is either given (slopes and intercepts for each piece) or 

the slopes and intercepts are calculated from a given step function and 𝑏𝑏1 value using 

equations (5.25), (5.29) and (5.27).  

• Step function (𝑆𝑆) – step levels are either given or defined from a piecewise linear decay 

function using equation (5.23). Note that the step levels 𝑠𝑠𝑖𝑖 in equation (5.23) depend on 

𝑘𝑘, the number of TKBs, since the 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (equation 5.13) depends on 𝑘𝑘. To use fixed step 

levels that do not depend on 𝑘𝑘, one can replace 𝑡𝑡𝑖𝑖′ with 𝑡𝑡𝑖𝑖 in equation (5.23).  

5.1.3 Performance Measures 

This section derives expressions for relevant performance measures associated with a 

collection of 𝑘𝑘 identical TKBs serving a region of area 𝐴𝐴. We first calculate the expected travel 

times to a TKB for the piecewise linear and step travel time decay function. Consider the 

piecewise linear function 𝐺𝐺(𝑡𝑡) as defined in equation (5.21). For catchment 𝑖𝑖 such that 𝑡𝑡𝑖𝑖−1 <

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, the expected number of potential TKB users willing to use the TKB in catchment 𝑖𝑖, 

denoted 𝑃𝑃𝐿𝐿(𝑖𝑖), is  

𝑃𝑃𝐿𝐿(𝑖𝑖) = � 2𝜋𝜋𝛿𝛿′𝑡𝑡(𝑚𝑚𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑖𝑖)𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1

=  2𝜋𝜋𝛿𝛿′ �
1
3
𝑚𝑚𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13 ) +

1
2
𝑏𝑏𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))2 − 𝑡𝑡𝑖𝑖−12 )� 

(5.31) 

With the piecewise linear distance decay function, the total expected round trip travel 

time for potential TKB users in catchment 𝑖𝑖 for 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), denoted 𝑇𝑇𝐿𝐿(𝑖𝑖) is 

𝑇𝑇𝐿𝐿(𝑖𝑖) = 2� 𝑡𝑡2𝜋𝜋𝛿𝛿′𝑡𝑡(𝑚𝑚𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑖𝑖)𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖
′(𝑘𝑘)

𝑡𝑡𝑖𝑖−1

= 4𝜋𝜋𝛿𝛿′ �
1
4
𝑚𝑚𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))4 − 𝑡𝑡𝑖𝑖−14 ) +

1
3
𝑏𝑏𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13 )�. 

(5.32) 
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For a step function 𝑆𝑆(𝑡𝑡) defined in equation (5.16), we can use equations (5.31) and 

(5.32) with 𝑚𝑚𝑖𝑖 = 0 and 𝑏𝑏𝑖𝑖 = 𝑠𝑠𝑖𝑖. Thus, for catchment 𝑖𝑖 such that 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), the expected 

number of potential TKB users likely to use the TKB with 𝑆𝑆(𝑡𝑡) in catchment 𝑖𝑖, denoted 𝑃𝑃𝑆𝑆(𝑖𝑖), is 

𝑃𝑃𝑆𝑆(𝑖𝑖) = 𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))2 − 𝑡𝑡𝑖𝑖−12 ) (5.33) 

and the total expected round trip travel time for potential TKB users in catchment 𝑖𝑖 for 𝑡𝑡𝑖𝑖−1 <

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), denoted 𝑇𝑇𝑆𝑆(𝑖𝑖), is 

𝑇𝑇𝑆𝑆(𝑖𝑖) =
4
3
𝜋𝜋𝛿𝛿′𝑠𝑠𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13 ) . (5.34) 

Let 𝑀𝑀 = {𝐿𝐿, 𝑆𝑆} denote the travel time decay function where 𝐿𝐿 indicates piecewise linear 

and 𝑆𝑆 indicates the step function. With 𝑘𝑘 TKBs, the total expected number of potential TKB 

users likely to use a TKB is then  

𝑃𝑃𝑚𝑚(𝑘𝑘) = 𝑘𝑘 ∑ 𝑃𝑃𝑚𝑚(𝑖𝑖)𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)  for 𝑚𝑚 ∈ 𝑀𝑀 (5.35) 

This depends on the number of TKBs, 𝑘𝑘, as indicated by equation (5.13), since having 

more TKBs once 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑇𝑇 gives each a smaller service area and thus reduces the maximum 

distance and time patients travel. To simplify the presentation we here-on refer to the “number of 

potential TKB users willing to use a TKB” as the “number of patients served by a TKB”. The 

average number of patients served by each TKB is 

𝑃𝑃𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) = 𝑃𝑃𝑚𝑚(𝑘𝑘)
𝑘𝑘

 for 𝑚𝑚 ∈ 𝑀𝑀 (5.36) 

Population coverage 𝐶𝐶𝑚𝑚𝑃𝑃 (𝑘𝑘) with 𝑘𝑘 TKBs is defined as the percentage of the total 

potential TKB users served by a TKB, given the distance decay function 𝑚𝑚. Thus,  

𝐶𝐶𝑚𝑚𝑃𝑃 (𝑘𝑘) = 𝑃𝑃𝑚𝑚(𝑘𝑘)
𝛿𝛿𝛿𝛿

 for 𝑚𝑚 ∈ 𝑀𝑀 (5.37) 

Area coverage 𝐶𝐶𝑚𝑚𝐴𝐴(𝑘𝑘) with 𝑘𝑘 TKBs is defined as the percentage of the total area served by a 

TKB, given the distance decay function 𝑚𝑚. Thus,  
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𝐶𝐶𝑚𝑚𝐴𝐴(𝑘𝑘) = 𝑘𝑘𝑘𝑘(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)2

𝐴𝐴
 for 𝑚𝑚 ∈ 𝑀𝑀 (5.38) 

Similar to the expected number of patients served by a TKB, the total expected round trip 

travel time served by the collection of 𝑘𝑘 TKBs is   

𝑇𝑇𝑚𝑚(𝑘𝑘) = 𝑘𝑘 ∑ 𝑇𝑇𝑚𝑚(𝑖𝑖)𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)  for 𝑚𝑚 ∈ 𝑀𝑀 (5.39) 

The expected round trip travel time per patient for decay model 𝑚𝑚 denoted 𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘) is 

𝑇𝑇𝑚𝑚(𝑘𝑘)
𝑃𝑃𝑚𝑚(𝑘𝑘) , so 

𝑇𝑇𝐿𝐿
𝑝𝑝(𝑘𝑘) =

𝑇𝑇𝐿𝐿(𝑘𝑘)
𝑃𝑃𝐿𝐿(𝑘𝑘)

= 2
∑ �14𝑚𝑚𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))4 − 𝑡𝑡𝑖𝑖−14 ) + 1

3 𝑏𝑏𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13 )�𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)    

∑ �13𝑚𝑚𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))3 − 𝑡𝑡𝑖𝑖−13 ) + 1
2 𝑏𝑏𝑖𝑖((𝑡𝑡𝑖𝑖′(𝑘𝑘))2 − 𝑡𝑡𝑖𝑖−12 )�𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) 

 

(5.40) 

And 

𝑇𝑇𝑆𝑆
𝑝𝑝(𝑘𝑘) =

𝑇𝑇𝑆𝑆(𝑘𝑘)
𝑃𝑃𝑆𝑆(𝑘𝑘) =

4
3
∑ 𝑠𝑠𝑖𝑖((𝑡𝑡𝑖𝑖′)3 − 𝑡𝑡𝑖𝑖−13 )𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)    
∑ 𝑠𝑠𝑖𝑖((𝑡𝑡𝑖𝑖′)2 − 𝑡𝑡𝑖𝑖−12 )𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑡𝑡𝑖𝑖−1<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (𝑘𝑘)

 (5.41) 

The maximum round trip travel time for a patient served at a TKB is 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) = 2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) (5.42) 

As a measure of travel time variability, the maximum minus average round trip travel 

time for patients served at a TKB  is 

𝑇𝑇𝑇𝑇𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) = 𝑇𝑇𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) − 𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘) = 2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) − 𝑇𝑇𝑚𝑚

𝑝𝑝(𝑘𝑘) for 𝑚𝑚 ∈ 𝑀𝑀 (5.43) 

Note that the range (maximum minus minimum) of the round trip travel time (or 

distance) for patients served at a TKB is equal to the maximum round trip travel time (or 

distance) for a patient served at a TKB since our CA model allows a patient to be located very 

near a TKB (with travel distance and time = 0).  
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We now define several other performance measures related to travel distance, similar to 

those above for travel time. The expected total round trip travel distance for patients visiting 

TKBs with 𝑘𝑘 TKBs is  

𝐷𝐷𝑚𝑚(𝑘𝑘) = 𝑇𝑇𝑚𝑚(𝑘𝑘)
𝑣𝑣

 for 𝑚𝑚 ∈ 𝑀𝑀 (5.44) 

and the average round trip travel distance per patient is  

𝐷𝐷𝑚𝑚
𝑝𝑝 (𝑘𝑘) = 𝑇𝑇𝑚𝑚

𝑝𝑝(𝑘𝑘)
𝑣𝑣

  for 𝑚𝑚 ∈ 𝑀𝑀 (5.45) 

The maximum round trip travel distance for a patient served at a TKB is 

𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) =
2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)

𝑣𝑣
    (5.46) 

The travel distance variability is defined as the maximum minus average round trip travel 

distance for patients served at a TKB is 

𝐷𝐷𝐷𝐷𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) = 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) − 𝐷𝐷𝑚𝑚

𝑝𝑝 (𝑘𝑘) = 2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)
𝑣𝑣

− 𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘)
𝑣𝑣

 for 𝑚𝑚 ∈ 𝑀𝑀 (5.47) 

The final performance measure is the total expected travel time savings with 𝑘𝑘 TKBs 

compared to the situation when all those who are served by a TKB would be served instead by 

travelling to a single centrally located healthcare facility (e.g., an existing facility). To 

conservatively estimate the travel distance to a single centrally located facility, we assume the 

facility is located at the center of a circle of area 𝐴𝐴 (the area of the service region). The expected 

travel distance from a randomly located point in the circle to its center is two-thirds the radius. 

With many TKBs, then each patient served at a TKB can be treated as distributed according to 

the original spatial distribution, so the expected round trip travel time per patient to the central 

facility in our setting can be approximated as 2 × 2
3

× �𝐴𝐴
𝜋𝜋

× 𝛼𝛼
𝑣𝑣

= 4𝛼𝛼
3𝑣𝑣
�𝐴𝐴
𝜋𝜋
 . The total travel time for 
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all 𝑃𝑃𝑚𝑚(𝑘𝑘) patients served by the 𝑘𝑘 TKBs would be  4𝛼𝛼
3𝑣𝑣
�𝐴𝐴
𝜋𝜋
𝑃𝑃𝑚𝑚(𝑘𝑘). The total travel time savings 

with 𝑘𝑘 TKBs, 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚(𝑘𝑘), is then  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚(𝑘𝑘) = 4𝛼𝛼
3𝑣𝑣
�𝐴𝐴
𝜋𝜋
𝑃𝑃𝑚𝑚(𝑘𝑘) − 𝑇𝑇𝑚𝑚(𝑘𝑘) for 𝑚𝑚 ∈ 𝑀𝑀 (5.48) 

The total travel distance savings with 𝑘𝑘 TKBs, 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚(𝑘𝑘), is 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚(𝑘𝑘) = 4𝛼𝛼
3
�𝐴𝐴
𝜋𝜋
𝑃𝑃𝑚𝑚(𝑘𝑘) − 𝐷𝐷𝑚𝑚(𝑘𝑘) for 𝑚𝑚 ∈ 𝑀𝑀 (5.49) 

From equations (5.48) and (5.35), the total round trip travel time savings per patient served at a 

TKB with 𝑘𝑘 TKBs, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘), is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚(𝑘𝑘)

𝑃𝑃𝑚𝑚(𝑘𝑘)
 for 𝑚𝑚 ∈ 𝑀𝑀 (5.50) 

Similarly, from equations (5.49) and (5.35), the total round trip travel distance savings per 

patient served at a TKB with 𝑘𝑘 TKBs, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚
𝑝𝑝(𝑘𝑘), is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚
𝑝𝑝(𝑘𝑘) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚(𝑘𝑘)

𝑃𝑃𝑚𝑚(𝑘𝑘)
 for 𝑚𝑚 ∈ 𝑀𝑀 (5.51) 

Using the derivations above, and those in previous sections for the Accessibility Index, 

we summarize the performance measures in Table 5.1 associated with a collection of 𝑘𝑘  identical 

TKBs serving a region of area 𝐴𝐴. Subscript 𝑚𝑚 identifies the travel time decay model (either 𝐿𝐿 for 

piecewise linear or 𝑆𝑆 for step function).  
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Table 5.1 Performance Measures 

# Measure Notation Equation(s) 
1 Total number of patients served at a TKB   𝑃𝑃𝑚𝑚(𝑘𝑘) 5.35 with 5.31 or 

5.33 
2 Number of patients served per TKB  𝑃𝑃𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) 5.36 
3 Population coverage  𝐶𝐶𝑚𝑚𝑃𝑃 (𝑘𝑘) 5.37 
4 Area coverage  𝐶𝐶𝑚𝑚𝐴𝐴(𝑘𝑘) 5.38 
5 Total round trip travel time for all patients served at a 

TKB 
𝑇𝑇𝑚𝑚(𝑘𝑘) 5.39 with 5.32 or 

5.34 
6 Round trip travel time per patient served at a TKB 𝑇𝑇𝑚𝑚

𝑝𝑝(𝑘𝑘)     5.40 or 5.41 
7 Maximum round trip travel time for patients served at a 

TKB  
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)     5.42 

8 Travel time variability for patients served at a TKB  𝑇𝑇𝑇𝑇𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)     5.43 

9 Total round trip travel distance for all patients served at 
a TKB  

𝐷𝐷𝑚𝑚(𝑘𝑘)   5.44 

10 Round trip travel distance per patient served at a TKB  𝐷𝐷𝑚𝑚
𝑝𝑝 (𝑘𝑘)     5.45 

11 Maximum round trip travel distance for patients served 
at a TKB  

𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)     5.46 

12 Travel distance variability for patients served at a TKB  𝐷𝐷𝐷𝐷𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)     5.47 

13 Maximum accessibility index  𝐴𝐴𝐴𝐴1(𝑘𝑘) 5.9a 
14 Minimum accessibility index 𝐴𝐴𝐴𝐴2(𝑘𝑘) 5.9b 
15 Average accessibility index 𝐴𝐴𝐴𝐴���(𝑘𝑘) 5.11 
16 Total travel time savings 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚(𝑘𝑘) 5.48 
17 Total travel distance savings 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚(𝑘𝑘) 5.49 
18 Average travel time savings per patient served at a TKB 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚

𝑝𝑝(𝑘𝑘) 5.50 
19 Average travel distance savings per patient served at a 

TKB  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚

𝑝𝑝(𝑘𝑘) 5.51 

 

5.2 General Results 

This section presents a series of analyses to evaluate healthcare accessibility using a 

network of TKBs in a rural area. Section 5.2.1 explores the effects of varying degrees of travel 

time decay on accessibility. Section 5.2.2 investigates how changes in the number (or density) of 
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potential TKB users within the region influence outcomes. Lastly, Section 5.2.3 examines 

scenarios where potential TKB users are unevenly distributed across the service area.  

5.2.1 Impact of Decay – No Decay, Weak Decay and Strong Decay 

This section examines the impact of varying travel time decay levels on system 

performance measures as the number of TKBs in the service region increases. Table 5.2 outlines 

the parameters used in the analysis. The service region spans 7,000 square miles and includes 

70,000 potential TKB users. 

 

Table 5.2 Parameters to analyze impact of travel time decay 

 Measure Value 

𝐴𝐴 Service region area (square miles)  7000 

𝛿𝛿 Density of potential TKB users (people per square mile) 10 

𝑣𝑣 Speed (miles per hour) 35 

𝛼𝛼 Circuity factor  1.4 

𝑡𝑡1 Catchment travel time limit 1 (hours) 0.5 

𝑡𝑡2 Catchment travel time limit 2 (hours) 1 

𝑡𝑡3 Catchment travel time limit 3 (hours) 1.5 

 

The travel time decay is divided into three catchment areas. The closest catchment (up to 

0.5 hours) covers 11.11% of the total area and serves 11.11% of potential users. The middle 

catchment (0.5 to 1.0 hours) encompasses 33.33% of the area and serves 33.33% all users. The 

farthest catchment (1.0 to 1.5 hours) accounts for 55.56% of the area and 55.56% of users. The 
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maximum catchment size of 1.5 hours corresponds to a travel distance of 52.5 miles at an 

average speed of 35 mph. Accounting for a circuity factor of 1.4, this results in an effective 

circular radius of 37.5 miles around each TKB. 

The total area within the maximum travel time catchment is 4,417.8 square miles, 

covering 63% of the service region. With the placement of two or more TKBs, the entire service 

region falls within the farthest catchment area, ensuring full coverage. 

The three levels of travel time decay are modeled with three step functions, and are: (i) 

No Decay, (ii) Weak Decay, and (iii) Strong Decay. No Decay has a single step with value 0.9 

(90% likelihood to use the TKB) up to the 1.5 hour travel time; thus for No Decay 𝑠𝑠1 = 𝑠𝑠2 =

𝑠𝑠3 = 0.9. Weak Decay has three steps with the likelihood declining from 90% to 70% to 50%, so 

𝑠𝑠1 = 0.9, 𝑠𝑠2 = 0.7, and 𝑠𝑠3 = 0.5. Strong Decay has three steps with the likelihood declining 

from 90% to 30% to 10%, so 𝑠𝑠1 = 0.9, 𝑠𝑠2 = 0.3, and 𝑠𝑠3 = 0.1.  

 Figure 5.4 illustrates the total number of patients served at a TKB as the number of TKBs 

increases from 1 to 30. Under the "No Decay" scenario, the maximum population is reached with 

two or more TKBs, serving 90% of the total potential TKB users, or approximately 63,000 

patients. In contrast, under "Weak Decay" and "Strong Decay" scenarios, the likelihood of 

patients visiting a TKB decreases with increasing travel time, resulting in fewer patients being 

served. The maximum population served in these cases is not achieved until at least 14 TKBs are 

deployed. At this point, the proximity of the TKBs ensures that all potential patients fall within 

the closest catchment area, where the likelihood of visiting a TKB remains at 90%, regardless of 

the decay level. 
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Figure 5.4 Total number of patients served at a TKB (Performance measure 1). 

 

Figure 5.5 shows the number of patients served per TKB as the number of TKBs 

increases from 1 to 30. Under the "No Decay" scenario, demand per TKB is initially very high, 

with up to 40,000 patients per TKB when only one is deployed. This corresponds to 

approximately 4.54 visits per hour if TKBs operate 24/7 year-round, highlighting the 

impracticality of such assumptions without capacity constraints. As more TKBs are added, 

demand per TKB decreases, and the results for the three decay scenarios become more aligned. 

With 10 TKBs, patient demand per TKB ranges from 5,045 to 6,300, equating to 13.8 to 17.2 

visits per day (assuming year-round operation). Once the number of TKBs reaches 14 or more, 

the results converge across all decay scenarios, as all potential patients fall within the closest 

catchment area, where the likelihood of visiting stabilizes at 90%. 
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Figure 5.5 Number of patients served per TKB (Performance measure 2). 
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curves for the population coverage have the same shape as for the three levels of travel time 
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Figure 5.6 Population and area coverage (Performance measures 3, 4). 

 

Figure 5.7 illustrates the total round-trip travel time for all patients served at TKBs. 

Greater levels of travel time decay result in lower total travel times (up to 14 TKBs) due to fewer 

patients being served, as shown in Figure 5.5. Initially, total travel time increases with additional 

TKBs because more patients are served. For instance, with No Decay, adding a second TKB 

increases the number of patients served, but with three or more TKBs, the total served reaches its 

maximum and remains constant. As the number of TKBs increases, fewer patients are in the 

farthest catchments, reducing total travel time as patients are closer to their nearest TKB. With 

Weak and Strong Decay, each additional TKB up to the 14th reduces the size of the farther 

catchments (lower likelihood areas) and increases the nearer catchments (higher likelihood 

areas), thereby serving more patients. This leads to an initial increase in total travel time. 

However, shorter travel times for some patients with additional TKBs can offset this increase, 

creating a mixed effect on total travel time, as depicted in Figure 5.7. 
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. 

Figure 5.7 Total round trip travel time for all patients served at a TKB (Performance measure 5). 

 

Figure 5.8 illustrates the average round-trip travel time per patient served at a TKB 

(lower three lines) and the maximum round-trip travel time for any patient (top line). As 

expected, both average and maximum travel times decrease as more TKBs are added, with 

longer trips replaced by shorter ones. Adding TKBs also shifts some regions from farther 

catchments to closer ones, increasing the number of patients served, as closer catchments have 

higher likelihoods of TKB use. The rate of decline in the lines reflects these dual effects: shorter 

trips for more patients in closer catchments and fewer patients in farther catchments. Strong 

Decay yields the lowest average travel time, but as Figure 5.4 shows, this occurs with fewer 

patients served. Figures 5.8 and 5.4together highlight a tradeoff: serving fewer, closer patients 

with Strong Decay versus serving more patients, including those at farther distances, with 

weaker decay levels. Importantly, the shape of the travel time decay function could be influenced 

by initiatives such as introducing new services, reducing costs, or marketing or training efforts to 

encourage TKB use. 
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Figure 5.8 Round trip travel time per patient served at a TKB and Maximum round trip travel 
time for patients served at a TKB (Performance measures 6, 7). 

 

Figure 5.9 illustrates travel time variability, defined as the difference between the 

maximum and average round-trip travel times per patient served at a TKB. The results highlight 

greater inequity with Strong Decay: while average travel times are shorter (Figure 5.8), some 

patients still experience significantly longer trips (top line in Figure 5.9). Conversely, with No 

Decay and Weak Decay, variability is lower, indicating more equitable travel times, but the 

average travel time is higher (Figure 5.8). The more equitable No Decay scenario results in 

longer average travel times but also serves a greater number of patients at TKBs. 
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Figure 5.9 Travel time variability for patients served at a TKB (Performance measure 8). 

 

Figures 5.10, 5.11, and 5.12 present travel distance performance measures corresponding 

to those for travel time shown in Figures 5.7-5.9. The patterns in these figures mirror those of the 

travel time measures, as the only difference lies in dividing by the constant speed parameter. 

Therefore, the analysis and insights discussed for Figures 5.7-5.9are directly applicable to 

Figures 5.10-5.12. 
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Figure 5.10 Total round trip travel distance for all patients served at a TKB (Performance 
measure 9). 

 

 

Figure 5.11 Round trip travel distance per patient served at a TKB and Maximum round trip 
travel distance for patients served at a TKB (Performance measures 10, 11). 
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Figure 5.12 Travel distance variability for patients served at a TKB (Performance measure 12). 

 

Figure 5.13 shows the maximum, average and minimum Accessibility Indices as the 

number of TKBs increases from 1 to 30. As expected, accessibility improves with increases in 

the number of TKBs, and the average Accessibility Index is linear for the number of TKBs.  
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Figure 5.13 Maximum, Average and Minimum Accessibility Index. 
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30 TKBs, the average one-way travel time drops to just 13.8 minutes, resulting in substantial 

time savings. 

 

 

Figure 5.14 Total travel time savings compared to one existing healthcare facility. 

 

 

Figure 5.15 Total travel distance savings compared to one existing healthcare facility. 
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Similarly, Figure 5.15 reports round-trip distance savings, showing a total savings of 4.54 

million miles with 30 TKBs. These savings reflect the number of trips made by potential 

patients, as determined by the population density (δ). For example, if δ is 10 potential patients 

per square mile and each patient makes one annual trip to a TKB, the values in Figures 5.14 and 

5.15 represent annual savings. 

Figures 5.16 and 5.17 report the travel time and distance savings on a per patient basis. 

Again, note that this effectively reflects one trip per year to a TKB. These two charts have the 

same shape as they differ only by a constant factor of the speed. However, note that Figures 5.14 

and 5.15 show the largest total savings are from No Decay, in part because that serves the largest 

number of patients. On the other hand, the largest average savings per patient are with Strong 

Decay, since that favors patients close to a TKB who have a shorter travel distance.  

 

 

Figure 5.16 Per patient round trip travel time savings compared to one existing healthcare 
facility. 
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Figure 5.17 Per patient round trip travel distance savings compared to one existing healthcare 
facility. 

 

The curves in Figures 5.14-5.17 highlight the substantial benefits of deploying the first 

few TKBs, with diminishing returns as more are added. To provide additional insight, Figure 

5.18 illustrates the marginal percentage increase in total travel time savings as the number of 

TKBs grows. For No Decay and Weak Decay, the savings increase by at least 10% per additional 

TKB up to five TKBs, while for Strong Decay, this threshold extends to sevenTKBs. Lesser 

incremental savings occur as more TKBs are added, and beyond 16 TKBs, the incremental 
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Figure 5.18 Marginal (%) savings in total travel time with each added TKB. 
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Figure 5.19 shows total travel time savings compared to one existing healthcare facility 
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Figure 5.19 Total travel time savings compared to one existing healthcare facility with three 
density values and Weak Decay. 

 

 

Figure 5.20 Per patient round trip travel time savings compared to one existing healthcare facility 
with three density values and Weak Decay. (all three lines overlap) 
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exhibit proportional scaling with density or remain unchanged for per-patient metrics, mirroring 

the trends from the previous section. 

5.2.3 Uneven Density of Potential TKB Users 

This section considers the impact of having an uneven distribution of potential TKB users 

across the service region using CA modeling. Suppose one half of the service region has a 

uniform density of 𝛿𝛿 potential TKB users, while the other half has a larger uniform density of ℎ𝛿𝛿 

potential TKB users for ℎ ≥ 1. We use 𝐿𝐿𝐿𝐿 and 𝐻𝐻𝐻𝐻 to denote the low-density and high-density 

regions respectively. We consider two options for the deployment of a set of 𝑘𝑘 TKBs: “even” 

and “proportional”. For the even distribution, regions 𝐿𝐿𝐿𝐿 and 𝐻𝐻𝐻𝐻 both have 𝑘𝑘/2 TKBs uniformly 

distributed across a region of area 𝐴𝐴/2. For the proportional distribution, the TKBs are 

distributed proportional to the demand, so that region 𝐿𝐿𝐿𝐿 has 𝑘𝑘/(1 + ℎ) TKBs and region 𝐻𝐻𝐻𝐻 

has 𝑘𝑘ℎ/(1 + ℎ) TKBs, with each set of TKBs serving a region of area 𝐴𝐴/2. We can use the 

performance measure equations derived earlier to analyze the even and proportional distribution 

of TKBs. Table 5.3 summarizes key performance measures for the even and proportional 

distribution of TKBs. This includes three sections with the top being three rows for general 

values, then separate sections for the even distribution of TKBs and proportional distribution of 

TKBs. The right two columns show the values for the 𝐿𝐿𝐿𝐿 and 𝐻𝐻𝐻𝐻 subregions, or a central value 

for the average across the entire region (calculated by multiplying the regional values by the 

regional fraction of potential TKB users in row 4).    

 

  



105 

 

Table 5.3 Performance measures for evenly distributed TKBs with varying patient density 
distributions, including proportional and uneven allocations 

 Region Ld Region Hd 
Area (square miles) 𝐴𝐴/2 𝐴𝐴/2 
Density of potential TKB users (per square 
mile) 

𝛿𝛿 ℎ𝛿𝛿 

Fraction of potential TKB users 1
1 + ℎ

 
ℎ

1 + ℎ
 

Even Distribution of TKBs   
Number of TKBs 𝑘𝑘/2 𝑘𝑘/2 
Area per TKB 𝐴𝐴

𝑘𝑘
 

𝐴𝐴
𝑘𝑘

 

Round trip distance per patient to nearest 
TKB by subregion (miles) 

4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

 
4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

 

Average round trip distance per patient to 
nearest TKB for entire region (miles) 

4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

 

Average Accessibility Index by subregion 𝑘𝑘
𝛿𝛿𝛿𝛿

 
𝑘𝑘
ℎ𝛿𝛿𝛿𝛿

 

Average Accessibility Index for entire region 𝑘𝑘
𝛿𝛿𝛿𝛿

2
1 + ℎ

 

Proportional Distribution of TKBs   
Number of TKBs 𝑘𝑘/(1 + ℎ) 𝑘𝑘ℎ/(1 + ℎ) 
Area per TKB 𝐴𝐴

𝑘𝑘
1 + ℎ

2
 

𝐴𝐴
𝑘𝑘

1 + ℎ
2ℎ

 

Round trip distance per patient to nearest 
TKB by subregion (miles) 

4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

�1 + ℎ
2

 
4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

�1 + ℎ
2ℎ

 

Average round trip distance per patient to 
nearest TKB for entire region (miles) 

4
3
� 𝐴𝐴
𝑘𝑘𝑘𝑘

1 + √ℎ
�2(1 + ℎ)

 

Average Accessibility Index by subregion 2𝑘𝑘
𝛿𝛿𝛿𝛿(1 + ℎ)

 
2𝑘𝑘

𝛿𝛿𝛿𝛿(1 + ℎ)
 

Average Accessibility Index for entire region  𝑘𝑘
𝛿𝛿𝛿𝛿

2
1 + ℎ

 

Area per TKB 1 100 
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Figure 5.21 illustrates the minimum and average Accessibility Index (AI) for both even 

and proportional distributions of TKBs across varying levels of demand unevenness (h). While 

both distributions result in the same average AI (𝐴𝐴𝐴𝐴���), this value decreases as demand unevenness 

(h) increases. For proportional TKB distribution, the Accessibility Index is uniform across 

regions, resulting in zero variability, with 𝐴𝐴𝐴𝐴��� equaling both the maximum and minimum values. 

In contrast, the even TKB distribution achieves the same average AI but with a fixed maximum 

value independent of h and a lower minimum value compared to the proportional distribution. 

This leads to a wider range of AI values and greater inequity under the even TKB distribution. 

 

 

Figure 5.21 Minimum and average Accessibility Index for even and proportional TKBs. 
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Figure 5.22 Average and maximum round trip travel distance for even and proportional TKBs. 

 

Figure 5.22 compares the average and maximum round trip travel distances for even and 

proportional TKB distributions. The even distribution maintains a constant average travel 

distance, regardless of demand unevenness (h). In contrast, the proportional distribution achieves 

a lower average travel distance, with the gap increasing as h grows. However, the maximum 

travel distance for the proportional distribution (in the Ld region) becomes significantly larger 

with increasing h, though it affects a smaller fraction of demand. 

This analysis highlights a tradeoff: the proportional distribution minimizes Accessibility 

Index inequity but creates substantial travel distance inequities (24% for h=2 and 67% for h=4). 
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and 38% below for h=4. Decision-makers must balance these competing priorities based on the 

desired equity goals for accessibility and travel distance. 

5.3 Results for Case Studies  

This section provides results using the CA models for access to TKBs for the case studies 

presented in Chapter 3 with the Southern and West-Central Missouri data sets. For each region, 

the service region area and density of potential TKB users are taken from the “Total” row in 

Tables 3.1 and 3.2. The speed is 35 mph and the circuity factor is 1.4. Travel time decay is 

modeled as presented in Table 4.4for each age group and the number of potential TKB users are 

aggregated over the four age groups using the age group percentages from Table 3.3. 

We first provide results for the Southern case study, which highlight key trends in 

potential TKB user demographics. Figure 5.23 shows that Middle-Aged users dominate, which is 

not surprising as they comprise 44.6% of the population (see Chapter 3) and have the highest 

likelihood of visiting a TKB (see Figures 4.3 and 4.4). The interaction between population 

fraction and likelihood to visit a TKB determines TKB patronage. Notably, the ordering of age 

groups changes as TKBs are added; for example, Young Adults outnumber School-Aged users 

with six or fewer TKBs, but School-Aged users surpass Young Adults when seven or more 

TKBs are available. 

Figure 5.24 illustrates population coverage by age group. With fewer TKBs, coverage is 

low due to the reduced likelihood of visiting a TKB at greater distances (see Figure 4.4). 

However, as TKBs are added, travel times decrease, leading to higher likelihoods of use and 

significant increases in population coverage, especially with the first few TKBs. Coverage grows 

more gradually as additional TKBs are deployed, eventually reaching 52% to 59% across all age 
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groups with 60 TKBs. This value reflects the maximum likelihood of using a TKB, which is 

under 68% (see Table 4.4 or Figures 4.3 and 4.4). 

 

 

Figure 5.23 Total number of potential TKB users by age group for the Southern region. 

 

 

Figure 5.24 Population coverage by age group for the Southern region. 
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Figure 5.25 shows the number of potential TKB users per TKB by age group, which 

again reflects the dominance of the Middle-Aged group. These results reflect a large number of 

potential users per TKB when there are few TKBs (up to a total of 31.6 users per day with one 

TKB, assuming 365 days per year of operation), but if a TKB operates many hours each day, this 

demand would not be excessive. Figure 5.26 provides a related perspective showing the fraction 

of users per TKB by age group. This shows that the percentage of potential users per TKB in the 

Middle-Aged group declines as the number of TKBs increases but remains above 50%. The 

remaining users are split between Seniors (about 19-22%), Young Adults (12-13%) and School 

Age (increasing from about 9% to almost 17%).   

 

 

Figure 5.25 Number of potential TKB users per TKB by age group for the Southern region. 
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Figure 5.26 Fraction of potential TKB users per TKB by age group for the Southern region. 

 

Figures 5.27-5.31 provide several other key performance measures. Figure 5.27 shows 

the average Accessibility Index (AI), which increases for all age groups as TKBs are added, and 
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age groups. Interestingly, the School Age group has a higher AI than the Senior group even 

though the Senior group is larger (21.2% vs. 17.3% of the population), because Seniors are much 

more likely than School-Aged potential users to visit a TKB (Figure 4.4).  
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pronounced. The longest travel times are for the Young Adult and Middle-Aged groups, which 

have very similar travel time decay behavior (Figure 4.4). Because School Age has the strongest 

decay, the average travel time is smallest, as there are fewer patients willing to make long trips.  

Figure 5.29 illustrates the total travel hours saved with TKBs compared to a single 

centrally located healthcare facility. The results closely mirror the chart of total potential TKB 

users (Figure 5.23), though Seniors and School-Aged groups contribute disproportionately to 

travel time savings when there are fewer TKBs. With a larger number of TKBs, the percentage 

of total hours saved by each age group aligns more closely with its share of total demand, as 

travel time decay curves become similar. For instance, with 30 TKBs, the average one-way 

travel time is 14.3 minutes, and the maximum is 21.4 minutes, making only the initial portion of 

the travel time decay curve relevant (for small travel times), where age groups exhibit similar 

behavior. Note that with additional TKBs the travel time savings increase at a decreasing rate, 

while the costs to establish and operate a network of TKBs may increase at a faster rate. For 

example, doubling the number of TKBs from seven (one per county) to 14 (a 100% increase), 

increases the travel time savings by only 37%.   
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Figure 5.27 Accessibility index (AI) by age group for the Southern region. 

 

 

Figure 5.28 Average round trip travel time by age group for the Southern region. 

 

 

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

AI

# of TKBs

School Age Young Adult Middle Age Senior

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

M
in

ut
es

# of TKBs

School Age Young Adult Middle Age Senior



114 

 

 

Figure 5.29 Total travel time savings compared to one existing healthcare facility for the 
Southern region. 
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Figure 5.30 Per patient round trip travel time savings compared to one existing healthcare facility 
for the Southern region. 

 

 

Figure 5.31 Per patient round trip travel time savings compared to three existing healthcare 
facilities for the Southern region. 

 

The results for the West-Central case study region are similar to those for the Southern 

region, so only a selection of charts is included. Figure 5.32 shows the total number of potential 

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

Ho
ur

s S
av

ed

# of TKBs

School Age Young Adult Middle Age Senior

-0.3

0.2

0.7

1.2

1.7

2.2

0 5 10 15 20 25 30

Ho
ur

s S
av

ed

# of TKBs

School Age Young Adult Middle Age Senior



116 

 

TKB users by age group, highlighting the dominance of Middle-Aged users, as seen in the 

Southern region. This dominance is due to Middle-Aged users being the largest fraction of the 

population and having the highest likelihood of visiting a TKB (see Figures 4.3 and 4.4). Unlike 

the Southern region, the other three age groups in the West-Central region contribute more 

evenly to the total. 

 

 

Figure 5.32 Total number of potential TKB users by age group for the West-Central region. 

 

Figure 5.33 illustrates population coverage by age group, which follows a similar trend to 

the Southern region but at higher levels due to a greater proportion of Young Adult and Middle-

Aged residents, who are more likely to use a TKB. Coverage is initially low with few TKBs but 

increases rapidly before leveling off. The maximum population coverage with 60 TKBs ranges 

between 56% and 62% for all age groups, reflecting the maximum likelihood of using a TKB of 

under 68% (see Table 4.4 or Figures 4.3 and 4.4). 
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Figure 5.33 Population coverage by age group for the West-Central region. 

 

Figure 5.34 shows the number of potential TKB users per TKB by age group, again 

reflecting the dominance of the Middle-Aged group and the much higher population density in 

the West-Central region compared to the Southern region (35.6 vs. 14.8 per square mile). In this 

chart, the other age groups contribute more evenly to potential patients at a TKB, unlike the 

Southern region. 
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Figure 5.34 Number of potential TKB users per TKB by age group for the West-Central region. 

 

Figure 5.35 complements this by showing the fraction of users per TKB by age group. 

Middle-Aged users account for approximately 50%, while the remaining three age groups share 

the other 50% more equally. 

 

 

Figure 5.35 Fraction of potential TKB users per TKB by age group for the West-Central region. 
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Figures 5.36-5.40present key performance measures for the West-Central region. Figure 

5.36 shows the average Accessibility Index (AI), which increases for all age groups as TKBs are 

added but is much lower than in the Southern region due to the greater population being served. 

Similar to the Southern region, this highlights inequities, with higher accessibility for Young 

Adults and lower accessibility for Middle-Aged residents. 

Figure 5.37 illustrates the average round trip travel time by age group. While the trends 

are similar to those in the Southern region, the decline in travel time is steeper, and the travel 

times are shorter due to the smaller service area (4,212 square miles for the West-Central region 

compared to 7,487 square miles for the Southern region). For instance, with 10 TKBs, the 

average round trip travel time to a TKB is 46.7 minutes in the Southern region but only 36.4 

minutes in the West-Central region, reflecting the benefits of a higher density of TKBs (from 

having a more compact service area). 

 

 

Figure 5.36 Accessibility index (AI) by age group for the West-Central region. 
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Figure 5.37 Average round trip travel time by age group for the West-Central region. 

 

 

Figure 5.38 Total travel time savings compared to one existing healthcare facility for the West-
Central region. 
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contributing to total travel time savings, though the savings across age groups are similar when 

there are only a few TKBs. 

Figure 5.39 highlights per patient travel time savings, ranging from 0.3 to 1.6 hours, 

which is lower than the Southern region's savings of 1-2 hours per patient. This reduction 

primarily reflects the smaller geographic area of the West-Central region, with age distribution 

differences playing a minor role. Among the age groups, School-Aged children benefit the most, 

followed by Seniors, though the differences are relatively modest. 

Figure 5.40 shows results with three existing healthcare facilities, where the travel time 

savings are substantially reduced compared to Figure 5.39. With a larger number of TKBs, the 

savings level off at about 50% of the savings observed with one existing healthcare facility, 

reflecting the impact of having additional existing healthcare options in the region. 

 

 

Figure 5.39 Per patient round trip travel time savings compared to one existing healthcare facility 
in West-Central region. 
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Figure 5.40 Per patient round trip travel time savings compared to three existing healthcare 
facilities for the West-Central region. 
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5.4 Concluding Remarks 

In this chapter, we developed continuous approximation (CA) models to evaluate the 

potential benefits of deploying telehealth kiosks/booths (TKBs) in rural regions, focusing on 

improving healthcare access and reducing travel times. A key element of the analysis was 

incorporating travel time decay functions to capture the decreasing likelihood of patients visiting 

a TKB as their travel time increases. Analytical results demonstrated how system performance 

metrics vary with the number of TKBs, different levels of travel time decay, and the availability 

of existing healthcare facilities. This chapter treated demand for service at a TKB as being 

continuously and evenly distributed over the service region to derive analytical expressions for 

system performance. This uniform distribution of demand is, of course, not true in reality. 

Nonetheless, the results for system performance as a function of the number of TKBs deployed 

can be insightful. Exact locations for TKBs (i.e., specific towns, addresses, etc.) requires more 

detailed modeling that better captures the demand variability over the service region, as from 

treating demand as occurring at discrete points (e.g., towns, census block groups, zip code 

centroids, etc.). Such modeling is the topic of the next chapter. 

5.4.1 Key Findings 

The results highlight the significant role of travel time decay in shaping system 

performance. While travel behavior strongly influences outcomes, accurate calibration of travel 

time decay models is essential to reflect real-world conditions. Simplified approaches, such as 

step functions or piecewise linear models, offer practical advantages when properly calibrated, 

providing comparable results while being easier to interpret and communicate. 

Travel time savings were shown to increase proportionally with the density of potential 

TKB users. However, uneven distributions of users introduce trade-offs between accessibility 
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and travel time performance measures. While the presence of existing healthcare facilities 

reduces the travel time savings from TKBs, the ongoing closure of rural hospitals underscores 

the importance of TKBs, particularly in large rural regions with limited healthcare options. 

5.4.2 Case Studies 

Two Missouri case studies demonstrated the practical implications of deploying TKBs: 

• A network with one TKB per county in the Southern region could serve 40% of the 

population, saving nearly 81,000 travel hours annually compared to a single central 

hospital. 

• A network with one TKB per county in the West-Central region could serve 56% of the 

population, saving approximately 67,000 travel hours compared to a single central 

hospital annually. 

These results underscore the potential of TKBs to significantly reduce travel times and 

improve healthcare access. However, their effectiveness depends on local factors, including 

patient willingness to use TKBs, TKB functionalities, and the availability of alternative 

healthcare options. 

5.4.3 Future Directions 

While this research focused on patients’ willingness to use TKBs, future studies should 

consider the intensity of use—how frequently potential patients visit TKBs. Factors such as 

population demographics, prevalent health conditions, and TKB capabilities will strongly 

influence usage rates. Customizing TKB designs to address specific regional healthcare needs or 

focusing on particular age groups or health conditions could enhance their effectiveness. 

Deploying different types of TKBs across rural regions may also optimize outcomes. 
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Another promising avenue for exploration is integrating drone operations with TKBs for 

rapid transport of medical supplies, test kits, and laboratory samples. Fully automated drone 

delivery systems could enable rapid delivery of critical items to TKBs, enhancing their 

functionality and utility. For further insights on drones in healthcare, see Enayati et al. (2023a, 

2023b) and Steele (2022). 

Periodic staffing of TKBs by healthcare professionals, such as clinicians or nurse 

practitioners, is another potential enhancement. Scheduled visits could expand the range of care 

offered, appeal to patients reluctant to rely solely on automated services, and strengthen the 

omnichannel healthcare approach. This hybrid strategy could complement existing clinics and 

hospitals while addressing gaps in rural healthcare access. 

5.4.4 Implications for Omnichannel Healthcare 

Omnichannel healthcare systems, which offer multiple avenues for care delivery, could 

be further optimized by examining the interactions between TKBs and other healthcare facilities. 

For example, TKB screenings might reduce clinic visits for routine care but could also drive 

follow-up appointments for issues requiring in-person attention. Understanding these cross-

channel dynamics is essential for designing efficient, patient-centered systems. For more on 

omnichannel healthcare systems, see Moreira and Santos (2020) and Moreira et al. (2023). 

Overall, this chapter demonstrates the potential of TKBs to improve healthcare access in 

underserved regions while providing a roadmap for future research and system enhancements. 

The next chapter explores a complementary modeling approach using discrete optimization for 

more specific and detailed planning of TKB deployment strategies.  
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Chapter 6 Discrete Optimization Modeling 

Similar to Chapter 5, this chapter addresses the problem of designing an optimal 

deployment strategy for Telehealth Kiosks or Booths (TKBs) to maximize healthcare 

accessibility while ensuring equitable access across a diverse population. However, unlike the 

continuous approximation approach previously explored, this chapter introduces a discrete 

optimization framework that enables more precise and granular planning. 

The problem involves a service area composed of multiple demand locations, each 

characterized by a specific population size and distribution across predefined subgroups. These 

demand locations vary in their geographic placement, presenting challenges in ensuring 

consistent access to healthcare services. TKBs, as a scalable and flexible solution, have the 

potential to bridge service delivery gaps if strategically deployed to balance accessibility, equity, 

and resource efficiency. 

Each demand location’s access to healthcare is influenced by proximity to TKBs, travel 

times, subgroup-specific preferences, and the capacity of TKBs to handle assigned populations. 

The goal is to develop a deployment strategy that maximizes overall access to healthcare services 

while addressing disparities and adhering to resource constraints such as the total number of 

deployable TKBs. 

Deploying TKBs effectively in rural or underserved areas presents several challenges. 

First, balancing the trade-off between maximizing accessibility and ensuring equity is complex. 

Concentrating TKBs in high-demand areas can increase overall coverage but risks neglecting 

sparsely populated regions. Conversely, evenly distributing TKBs can reduce disparities but may 

dilute their overall impact by spreading resources thinly. Second, the diverse geographic and 

demographic characteristics of the service area complicate planning. Different subgroups exhibit 
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varying travel tolerances and preferences for telehealth services, requiring the model to account 

for these heterogeneities. Finally, managing the capacity of TKBs is crucial to avoid 

overburdening some kiosks while leaving others underutilized. 

This chapter formulates the problem as a discrete optimization model, incorporating the 

following key features: 

1. Demand and Subgroup-Specific Requirements: Each demand location has a fixed 

population distributed across subgroups (e.g., age, socioeconomic status). These 

subgroups have varying preferences for utilizing TKBs, influenced by factors such as 

technology literacy, trust in telehealth services, and cultural acceptance. Preferences are 

modeled through geographic impedance functions (travel time decay function) that 

capture the likelihood of service utilization based on travel time. 

2. Candidate TKB Locations: Deployment of TKBs is restricted to a predefined set of 

candidate locations, each characterized by attributes such as attractiveness, which reflects 

its suitability for serving demand. Demand is modeled as occurring at discrete points to 

represent the spatially distributed yet clustered nature of the population, ensuring that the 

analysis captures the realistic dynamics of healthcare access in the region. 

3. Travel Time and Catchment Areas: Travel times between demand locations and 

candidate TKBs are precomputed. Accessibility is evaluated within specific catchment 

radii (e.g., 0–30 minutes, 30–60 minutes, 60–90 minutes), with diminishing likelihood to 

use TKBs as travel time increases. 

4. Provider Capacity: Deployed TKBs have a finite capacity, modeled as a provider-

population ratio, to ensure equitable service distribution within their catchment areas. 
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5. Equity and Accessibility: Accessibility is measured using the accessibility index (like 

Chapter 5) that integrates travel time, subgroup preferences, and provider capacity. 

Equity is assessed using the Gini coefficient, which quantifies disparities in access across 

demand locations. 

6. Resource Constraints: The deployment strategy is constrained by a fixed budget, 

limiting the number of TKBs that can be deployed. 

The discrete optimization model is developed under the following assumptions: 

• Demand Characteristics: Each demand location has a fixed population size and subgroup 

distribution that remain constant during the planning horizon. 

• Catchment and Service Areas: Accessibility is evaluated only within predefined 

catchment radii. Locations outside the largest catchment radius are considered 

underserved. 

• Candidate Location Attributes: Candidate locations are a predefined, known, and fixed 

set. 

• Provider Capacity: Each TKB can serve the population within its catchment area, 

constrained by its capacity. 

• All-or-Nothing Assignment: Demand locations are either fully assigned to a TKB within a 

catchment or not at all. 

• Equity and Accessibility Metrics: Accessibility indices are computed for each demand 

location, accounting for contributions from assigned TKBs and subgroup preferences. 

• Fixed Budget: The budget for deploying TKBs is known and fixed. 

• Independent Catchments: Assignments to overlapping catchments are treated 

independently. 
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By integrating these features and assumptions, the discrete optimization model offers a 

structured and practical approach for determining the optimal deployment strategy for TKBs. 

This chapter explores the application of this model to two case study regions in Missouri, 

building on the continuous approximation insights from Chapter 5, while offering a more 

detailed and specific framework for planning and implementation. The remainder of this chapter 

is structured as follows: Section 6.1 presents the modeling approach. Numerical Results are 

discussed in Section 6.2. Managerial insights and conclusions are included in Section 6.3. 

6.1 Model Formulation  

This section presents the formulation of the Optimal Deployment of Telehealth Kiosks 

(ODTKB) model, which aims to strategically place a limited number of TKBs in a service area. 

The objective is to maximize healthcare access, while ensuring equitable coverage across 

different population subgroups and minimizing travel distances to improve accessibility for all 

individuals. Suppose the service area is made up of various demand locations ℐ (e.g., block 

groups), which represent areas where people need healthcare access. These demand locations are 

spread across the area, and each has a population that may have different healthcare needs. These 

populations are further divided into subgroups 𝒦𝒦 based on factors such as age, chronic health 

conditions, and socio-economic status. The model aims to provide these populations with 

optimal access to healthcare services through the deployment of TKBs. 

The potential locations for placing the TKBs are referred to as candidate locations 𝒥𝒥. A 

TKB can only serve demand locations that are within a certain catchment radius 𝒞𝒞 from the 

candidate location. The catchment radius defines how far a TKB can effectively serve people in 

nearby demand locations, which is crucial for maximizing accessibility and reducing travel 
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times. The travel time 𝑡𝑡𝑖𝑖𝑖𝑖 between each demand location 𝑖𝑖 ∈ ℐ and each candidate TKB location 

𝑗𝑗 ∈ 𝒥𝒥 is a key factor in determining how easily a population can access healthcare. 

Each demand location has a population size 𝑃𝑃𝑘𝑘𝑘𝑘, and the populations are classified into 

different subgroups. Each subgroup’s healthcare needs are considered through a geographic 

impedance function 𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖), which models how travel time influences the likelihood of a 

person’s willingness to seek healthcare services at a given TKB location. This function is 

specific to each subgroup, as different groups may experience different levels of difficulty when 

accessing healthcare based on factors like mobility or urgency. 

The model’s objective is to maximize healthcare access for the population. This is 

quantified by a measure of accessibility, 𝒜𝒜𝑖𝑖, which is an index calculated for each demand 

location. The accessibility index considers the number of TKBs deployed, their proximity to 

demand locations, and the attractiveness 𝑆𝑆𝑗𝑗 of each TKB candidate location. The attractiveness of 

a location reflects how well-suited it is to serve the population, considering factors such as 

population density and existing healthcare infrastructure. 

In addition to maximizing access, the model also incorporates an equity constraint to 

ensure that healthcare is distributed fairly across the service area. The goal is to minimize 

disparities in healthcare access, ensuring that no demand location is significantly disadvantaged 

compared to others. This is achieved by limiting the inequity tolerance 𝜖𝜖, which restricts the 

maximum allowable difference in the accessibility indices across all demand locations. 

Decision variables include binary variables 𝑦𝑦𝑗𝑗 and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 to determine whether a TKB is 

deployed at a candidate location and whether a demand location is assigned to a specific TKB 

within a catchment radius, respectively. The number of TKBs to be deployed is constrained to a 
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specified maximum, 𝑛𝑛, ensuring that resources are allocated efficiently. Table 6.1 summarizes all 

the notations. 

 

Table 6.1 Summary of Notations 

Sets 
ℐ set of demand locations 
𝒥𝒥 set of TKB candidate locations 
𝒦𝒦 set of subgroups in the population 
𝒞𝒞 set of catchment radii 
ℱ𝑐𝑐𝑐𝑐 subset of demand locations that are within catchment radius 𝑐𝑐 ∈ 𝒞𝒞 from TKB 

 candidate location 𝑗𝑗 ∈ 𝒥𝒥 
𝒬𝒬𝑐𝑐𝑐𝑐 subset of TKB candidate locations that are within catchment radius 𝑐𝑐 ∈ 𝒞𝒞 to cover 

 demand location 𝑖𝑖 ∈ ℐ 
Parameters 

𝑛𝑛 given number of TKBs to deploy in the service area 
𝑆𝑆𝑗𝑗 supply of TKB candidate location 𝑗𝑗 ∈ 𝒥𝒥 
𝑡𝑡𝑖𝑖𝑖𝑖 travel time from demand location 𝑖𝑖 ∈ ℐ to TKB candidate location 𝑗𝑗 ∈ 𝒥𝒥 
𝑃𝑃𝑘𝑘𝑘𝑘 population of the subgroup 𝑘𝑘 ∈ 𝒦𝒦 residing in demand location 𝑖𝑖 ∈ ℐ 

𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖) geographic impedance function of travel time 𝑡𝑡𝑖𝑖𝑖𝑖 for subgroup 𝑘𝑘 ∈ 𝒦𝒦 within 
catchment 𝑐𝑐 ∈ 𝒞𝒞 

ℛ𝑗𝑗 provider-population ratio of TKB candidate location 𝑗𝑗 ∈ 𝒥𝒥 
𝒜𝒜𝑖𝑖 accessibility index for demand location 𝑖𝑖 ∈ ℐ 
𝛼𝛼𝑐𝑐 Value of getting assigned to a TKB within catchment 𝑐𝑐 ∈ 𝒞𝒞 
𝜖𝜖 inequity tolerance 

Decision Variables 
𝑦𝑦𝑗𝑗 binary variable, 1 if a TKB is deployed at candidate location 𝑗𝑗 ∈ 𝒥𝒥, 0 otherwise 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 binary variable, 1 if demand location 𝑖𝑖 ∈ ℐ is assigned to a TKB deployed at 𝑗𝑗 ∈ 𝒥𝒥 

 within catchment 𝑐𝑐 ∈ 𝒞𝒞, 0 otherwise 
 

The model formulation for Optimal Deployment of TKBs (ODTKB) is then given by: 
[𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂] 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ����𝛼𝛼𝑐𝑐𝑃𝑃𝑘𝑘𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖)

𝑗𝑗∈𝒥𝒥𝑖𝑖∈ℐ𝑘𝑘∈𝒦𝒦𝑐𝑐∈𝒞𝒞

 (6.1) 
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Subject to: 

�𝑦𝑦𝑗𝑗
𝑗𝑗∈𝒥𝒥

≤ 𝑛𝑛 (6.2) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑗𝑗 , ∀𝑖𝑖 ∈ ℐ, 𝑐𝑐 ∈ 𝒞𝒞, 𝑗𝑗 ∈ 𝑄𝑄𝑐𝑐𝑐𝑐 (6.3) 

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝒥𝒥\𝑄𝑄𝑐𝑐𝑐𝑐

= 0, ∀𝑖𝑖 ∈ ℐ, 𝑐𝑐 ∈ 𝒞𝒞 
(6.4) 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐∈𝒞𝒞

≤ 1, ∀𝑖𝑖 ∈ ℐ 
(6.5) 

𝒜𝒜𝑖𝑖 = �� � ℛ𝑗𝑗
𝑗𝑗∈𝒬𝒬𝑐𝑐𝑐𝑐𝑘𝑘∈𝒦𝒦𝑐𝑐∈𝒞𝒞

𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖)𝑦𝑦𝑗𝑗, ∀𝑖𝑖 ∈ ℐ 
(6.6) 

𝐺𝐺𝐺𝐺(𝒜𝒜) ≤ 𝜖𝜖 (6.7) 

where,  

ℛ𝑗𝑗 =
𝑆𝑆𝑗𝑗

∑ ∑ ∑ 𝑃𝑃𝑘𝑘𝑘𝑘𝑖𝑖∈ℱ𝑐𝑐𝑐𝑐𝑘𝑘∈𝒦𝒦𝑐𝑐∈𝒞𝒞 𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖) 
∀𝑗𝑗 ∈ 𝒥𝒥 

(6.8) 

and  

𝐺𝐺𝐺𝐺(𝒜𝒜) =
∑ ∑ |𝑖𝑖′∈ℐ𝑖𝑖∈ℐ 𝒜𝒜𝑖𝑖 − 𝒜𝒜𝑖𝑖′|

2|ℐ|∑ 𝒜𝒜𝑖𝑖𝑖𝑖∈ℐ
 (6.9) 

The objective function (6.1) aims to maximize the weighted healthcare access across all 

demand locations. It is calculated as the sum of the product of population size 𝑃𝑃𝑘𝑘𝑘𝑘, subgroup-

specific geographic impedance function 𝒲𝒲𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖𝑖𝑖), and the assignment of demand locations 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 

to deployed TKBs. This term is further weighted by 𝛼𝛼𝑐𝑐, reflecting the importance of assigning 

demand locations to closer TKBs. That is, the access for each demand location is influenced by 

the number of TKBs deployed, their proximity, and how well they serve the population in each 

subgroup. Constraint (6.2) ensures that the total number of TKBs deployed does not exceed the 

maximum number, 𝑛𝑛, specified in the problem. Constraints (6.3) ensure that a demand location 
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can only be assigned to a TKB if that TKB is already deployed. In constraints (6.4), a demand 

location must be assigned to a TKB within its allowed catchment area; if no TKBs are within the 

catchment, the assignment is not made. Constraints (6.5) ensure that each demand location is 

assigned to at most one TKB. The objective function incentivizes assignments to the closest 

possible TKB, aligning with the goal of maximizing access efficiency. Constraints (6.6) define 

the accessibility index, for each demand location, quantifying healthcare access by considering 

the deployment of TKBs and their ability to meet healthcare needs. This index is weighted by the 

population and the effectiveness of TKBs. A critical element in this calculation is the provider-

population ratio ℛ𝑗𝑗 at each TKB candidate location 𝑗𝑗 ∈ 𝒥𝒥, as defined in equation (6.8). This ratio 

measures the availability of TKBs relative to a demand location, with demand weighted by 

population size and the geographic impedance that accounts for willingness to travel to a TKB 

for healthcare services. A higher ratio indicates better service capacity relative to demand, 

enhancing healthcare access in nearby demand locations. Therefore, the accessibility index 

reflects both the capacity of the TKBs and the distance or difficulty of access for each demand 

location, ensuring that locations with higher population needs and better provider-population 

ratios are prioritized. Constraint (6.7) then quantifies the inequity in accessibility across all 

demand locations. This constraint limits the Gini index to a specified tolerance, 𝜖𝜖, ensuring that 

access to healthcare is distributed as equitably as possible. Gini Index is given by (6.9) that 

calculates the relative disparity in accessibility indices across demand locations, with a higher 

value indicating greater inequity. The Gini index can take a value between 0 and 1; 0 indicates 

perfect equality, meaning all demand locations have equal access to healthcare, while a Gini 

index of 1 indicates maximum inequality, meaning that access is highly concentrated in just a 
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few locations, with others having little or no access. By constraining the Gini index, the model 

ensures that healthcare access is as evenly distributed as possible within the given parameters. 

6.2 Numerical Results  

This section presents the numerical results of the analysis for the deployment of TKBs, 

ranging from 1 to 30 units, in the West-Central region case study. The findings provide a detailed 

examination of the trade-offs and relationships between key metrics—coverage, equity, travel 

time, and accessibility—highlighting the challenges and opportunities in designing equitable and 

efficient rural healthcare systems. Results for the Southern region are summarized separately in 

Appendix A to avoid redundancy, as the policy implications align with those of the West-Central 

region. 

The analysis begins by evaluating the trade-offs between maximizing service coverage 

and ensuring equitable access. By varying inequity tolerance, measured by the Gini index, the 

results demonstrate how different allocation strategies affect the total population served and the 

fairness of resource distribution. The impact of resource sufficiency is also assessed by 

examining how the number of deployed TKBs influences the maximum expected covered 

demand, revealing the balance between equity and efficiency as resources increase. 

Travel time and accessibility are then analyzed, with results for both average and 

maximum round-trip travel times to the nearest TKB. These metrics illustrate how stricter equity 

constraints prioritize underserved populations but may slightly compromise efficiency. The 

analysis further explores demographic disparities in accessibility, focusing on the unique barriers 

faced by Seniors, Middle-Aged individuals, Young Adults, and Children, and how these groups 

benefit from TKB deployment. 
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Lastly, the geographic placement of TKBs under varying equity constraints is presented, 

with maps visually demonstrating how resource allocation prioritizes underserved areas as equity 

constraints tighten. These results emphasize the need to balance equity and efficiency, 

particularly in resource-limited scenarios, while highlighting the diminishing returns of 

additional TKB deployments as coverage approaches saturation. 
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Figure 6.1 Total Expected Users and Population with Long Travel Times. The left axis illustrates 
the maximum expected covered population for different levels versus various inequity tolerance 
𝜖𝜖. The secondary axis shows the population that experiences travel times longer than 30 minutes 

to the nearest TKB. 
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Figure 6.1 illustrates the trade-off between equity, accessibility, and resource allocation 

efficiency as measured by the total expected users and the Gini index for varying numbers of 

TKBs. They highlight the intricate balancing act required in designing equitable yet efficient 

rural healthcare systems. Each panel corresponds to a different number of deployed TKBs, 

ranging from 2 to 25, and presents two key metrics as the Gini index varies: the total expected 

users (black solid line) and the population with access greater than 30 minutes to the nearest 

TKB (red dashed line). These metrics highlight how healthcare accessibility and service 

coverage evolve as equity shifts. The Gini index, represented on the x-axis, measures inequality, 

with lower values indicating more equitable access to healthcare. The total expected users (black 

line) reflect the total population served by the deployed TKBs, accounting for travel willingness. 

Meanwhile, the population with access > 30 minutes (red dashed line) represents the segment of 

the population that faces significant travel barriers, serving as a proxy for inequity in access. As 

the Gini index increases, reflecting a greater tolerance for inequity in the distribution of 

resources, the total expected users tend to rise. This trend indicates that relaxing equity 

constraints often allows resources to be concentrated in areas with higher demand, thereby 

maximizing usage efficiency. Conversely, when inequity tolerance is low, resources are 

distributed more evenly to reduce disparities. However, this egalitarian approach can lead to an 

overall reduction in service coverage, as observed in the graphs. For cases where resources are 

extremely limited (TKB ≤ 4), enforcing strict equity considerations appears to have unintended 

consequences. Figures (a) through (c) illustrate that the population experiencing access times 

longer than 30 minutes (red dashed lines) is higher under lower Gini index values. This result 

underscores that in resource-scarce scenarios, prioritizing equity too rigorously can detract from 



138 

 

overall accessibility and efficiency. For instance, scarce resources spread thinly to achieve equity 

may leave many users with suboptimal access, illustrating a potential inefficiency in the system. 

The situation improves with a moderate increase in resources (TKB ≥ 5 in Figures (d) 

through (h)). In these cases, while the population with longer access times still increases as 

inequity tolerance grows, the trade-offs are more manageable. The general trend suggests that 

allowing some flexibility in equity constraints enables a better balance between access and 

efficiency. Notably, when the Gini index is set too low, even with a sufficient number of TKBs, 

accessibility suffers. For instance, a Gini index of 0.05 or lower may result in increased 

population segments facing long access times, highlighting the risks of overly stringent equity 

considerations. An important turning point is evident with TKB = 25, where sufficient resources 

are available to achieve both equity and efficiency goals effectively. At this level, when the 

inequity tolerance 𝜖𝜖 is set to 0.1, the population with access times longer than 30 minutes drops 

to zero. This result demonstrates the potential for synergistic outcomes when resource 

availability aligns with carefully calibrated equity constraints. These findings emphasize the need 

for nuanced policy design. In resource-limited scenarios, imposing rigid equity constraints may 

unintentionally harm overall accessibility, leaving vulnerable populations underserved. 

Conversely, in resource-rich environments, equity considerations can be more stringently 

enforced without compromising efficiency. Policymakers should therefore adopt a context-

sensitive approach, adjusting equity thresholds dynamically based on resource availability and 

population needs. Moreover, these results highlight the importance of understanding the 

interplay between equity and efficiency in resource allocation. While equity is a vital goal in 

healthcare delivery, it must be balanced against practical considerations of coverage and 

accessibility. This analysis provides a framework for designing resource allocation policies that 
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are both equitable and effective, paving the way for more resilient and inclusive healthcare 

systems. 

 

 

Figure 6.2 Analysis of the Accessibility Index (AI) for TKB Deployment: The left panel presents 
the overall AI trend, showing the minimum, maximum, and average accessibility indices as the 

number of deployed TKBs increases. The right panel illustrates the distribution of AI across 
different age groups (Seniors, Middle-Aged, Young Adults, and Children) for various numbers 

of deployed TKBs, highlighting the varying accessibility levels for each demographic. 

 

Figure 6.2 illustrates the relationship between the number of TKBs and the Accessibility 

Index (AI). In the left panel, the Average AI represents the overall level of accessibility achieved 

across the population, while the Max AI reflects the highest levels of access attained in the best-

served regions. The Min AI, in contrast, tracks accessibility in the least-served areas, shedding 

light on disparities and the degree to which underserved populations benefit from additional 

TKBs. Together, these metrics reveal the trade-offs between equity and efficiency in resource 

allocation. The right panel provides a demographic breakdown, capturing how different age 

groups experience changes in accessibility as the number of TKBs increases. The Accessibility 

Index for each group measures the extent to which members of that demographic can benefit 
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from the deployed resources. The comparison across age groups reveals the relative prioritization 

and unique challenges faced by each demographic segment in accessing telehealth services. 

From the left plot in Figure 6.2, the Max AI (green line) shows a sharp increase early on, 

followed by a plateau after approximately 25 TKBs, suggests diminishing returns in areas that 

are already well-covered. Adding more TKBs beyond this point does not significantly improve 

accessibility for the most served regions, emphasizing the need to focus on underserved areas 

instead of continuing to saturate already accessible regions. The Min AI (orange line) starts at 

zero when TKBs are scarce. Although it rises as more TKBs are deployed, its growth is slower 

compared to the Max AI. This disparity highlights persistent inequities, as underserved regions 

take longer to see meaningful benefits even when resources are added. The Average AI (blue 

line) steadily increases across all scenarios, indicating that the general population consistently 

benefits from additional TKBs. However, the widening gap between the Min AI and Max AI 

demonstrates trade-offs between equity and efficiency. While overall accessibility improves, 

underserved regions may still lag significantly behind, emphasizing the need for a balance 

between maximizing total accessibility and reducing disparities. 

From the right plot in Figure 6.2, we can observe that Children (red) consistently exhibit 

the lowest AI, likely due to reliance on caregivers and unique barriers, while Seniors (blue) also 

face slower improvements, potentially due to mobility challenges or difficulties adopting 

telehealth technologies. In contrast, Middle-Aged individuals (yellow) and Young Adults (green) 

benefit the most, reflecting fewer barriers and prioritization in resource allocation. 

Although all groups experience improvements as the number of TKBs increases, 

diminishing returns are evident beyond 25 TKBs, indicating that simply adding more resources is 

insufficient to address persistent inequities. These findings suggest that the Gini index constraint 
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could consider both demographic and geographic locations as subgroups in the future research 

rather than focusing solely on geographic location, enabling a more nuanced approach to 

equitable access in telehealth systems. 

 

 

Figure 6.3 Maximum expected covered demand versus the number of deployed TKBs, with 
varying Gini index values indicating different levels of equity in healthcare access distribution. 

 

Figure 6.3 demonstrates the maximum expected total users served as the number of TKBs 

increases under different levels of inequity tolerance, represented by the Gini Index (GI). The 

Gini Index values indicate varying degrees of tolerance for inequity, with lower values (e.g., GI 

= 0.05) reflecting stricter equity constraints and higher values (e.g., GI = 0.2 or "none") 

representing more relaxed equity considerations. The main observation is that the total number of 

users served increases consistently as the number of TKBs grows. This trend holds true for all 

levels of inequity tolerance, demonstrating that deploying additional TKBs improves service 

coverage across the board as expected. When no equity constraint is applied (GI = none, blue 

bars), the maximum expected covered demand is consistently the highest across all TKB 

scenarios. This indicates that prioritizing efficiency without considering equity results in the 

greatest overall service coverage. However, as the Gini Index constraint becomes stricter (e.g., 
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GI = 0.05, purple bars), the maximum expected covered demand decreases. This suggests that 

enforcing stricter equity constraints sacrifices some efficiency in favor of a more equitable 

distribution of resources. For lower numbers of TKBs (e.g., TKBs ≤ 10), the difference in total 

users served between relaxed (GI = none) and strict (GI = 0.05) constraints is more pronounced. 

This reflects that in resource-scarce scenarios, imposing strict equity constraints can significantly 

limit overall efficiency. As the number of TKBs increases, the differences between Gini Index 

levels become less pronounced. For instance, at around 25–30 TKBs, the total covered demand 

converges for all Gini Index values. This suggests that with sufficient resources, it becomes 

possible to achieve both equity and efficiency goals. When resources are limited, relaxing equity 

constraints may allow for maximizing total service coverage but at the cost of inequitable access. 

Stricter equity constraints are more impactful in resource-scarce environments, where balancing 

fairness and efficiency becomes challenging. With higher numbers of TKBs, the diminishing 

marginal returns in efficiency highlight the potential to prioritize equitable distribution without 

significantly sacrificing total coverage. 

Figure 6.4 shows the relationship between the number of TKBs and round-trip travel 

times to the nearest TKB under different levels of inequity tolerance, represented by Gini Index 

(GI) values. The left panel displays the average round-trip travel time in the line plot capturing 

how the average round-trip travel time decreases as more TKBs are deployed. Each line 

represents a different GI value, ranging from no equity constraint (GI=none) to increasingly 

stricter equity constraints (GI=0.05). The right panel displays the maximum round-trip travel 

time in a grouped bar plot for the worst-case locations (those farthest from a TKB) under 

different GI values. The bars for each TKB configuration are grouped by GI levels, illustrating 

the impact of inequity tolerance on accessibility for the most underserved regions. 
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Figure 6.4 Impact of the Number of Telehealth Kiosks/Booths (TKBs) and Gini Index (GI) 
Constraints on Average and Maximum Round-Trip Travel Times: The left panel shows how 

average travel times decrease with increasing TKBs, with stricter GI constraints slightly 
increasing travel times due to prioritization of equity. The right panel illustrates the maximum 

travel times for the farthest locations, highlighting the trade-off between equity (stricter GI 
constraints) and efficiency (lower travel times) and the diminishing returns as TKB numbers 

increase. 

 

From the left plot in Figure 6.4, it is observed that the average round-trip travel time 

decreases consistently as the number of TKBs increases, regardless of the GI value. This trend 

indicates that adding more TKBs improves overall accessibility for the population, as expected. 

Stricter GI constraints (e.g., GI=0.05, purple line) result in slightly higher average travel times 

compared to more relaxed constraints (e.g., GI=none, blue line). This suggests that enforcing 

equity may slightly compromise efficiency by spreading resources to prioritize underserved areas 

rather than optimizing for overall demand. As the number of TKBs approaches 25–30, the 

average travel times for all GI levels converge, indicating that with sufficient resources, the 

differences caused by inequity constraints diminish. 

From the right plot in Figure 6.4, it is observed that stricter GI levels (e.g., GI=0.05, 

purple bars) consistently result in higher maximum round-trip travel times compared to more 

relaxed constraints. This reflects that enforcing equity spreads TKBs to prioritize underserved 
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areas, which may leave certain regions farther from their nearest TKB. Furthermore, the 

maximum travel time decreases significantly as more TKBs are deployed, regardless of GI 

levels. However, the rate of improvement is slower for stricter GI constraints, as equitable 

distribution sacrifices some efficiency in reducing maximum travel times. Similarly, beyond 20–

25 TKBs, the reduction in maximum travel time becomes less pronounced, indicating 

diminishing returns in adding more TKBs. This trend highlights that improving the placement 

strategy may be more effective than simply increasing the number of TKBs.  

This analysis highlights several key implications for the deployment of TKBs under 

varying levels of inequity tolerance. Stricter Gini Index (GI) constraints prioritize equity by 

focusing on underserved areas, but this comes at the cost of slightly higher average and 

maximum travel times. However, with sufficient resources—around 25 to 30 TKBs—the trade-

offs between equity and efficiency diminish, making it possible to achieve both goals 

simultaneously. 

In resource-limited scenarios, the strategic deployment of TKBs becomes critical. 

Optimizing their placement can balance equity and efficiency, ensuring underserved regions are 

prioritized without significantly increasing travel times for others. Stricter GI constraints also 

lead to higher maximum travel times, highlighting the need for innovative solutions such as 

mobile TKBs or targeted support to reduce travel burdens for the farthest locations. 

Finally, the diminishing returns observed beyond 25 TKBs suggest that simply increasing 

the number of kiosks is not always the most effective approach. Instead, smarter placement 

strategies and addressing specific barriers faced by remote regions will yield greater benefits in 

improving healthcare access. 
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Figure 6.5 Average saved travel time (left axis) and total population benefiting from closer 
proximity to Telehealth Kiosks/Booths (TKBs) than the nearest hospital (right axis) under the 

most equitable deployment strategy for 1–30 TKBs. Numbers on the red line indicate the number 
of block groups benefiting from closer access. 

 

Figure 6.5 displays the impact of deploying TKBs equitably across 1 to 30 deployment 

scenarios. It shows two key metrics; the black line, measured on the left vertical axis, represents 

the average travel time saved for individuals whose nearest TKB is closer than the nearest 

hospital. This metric reflects how much travel time is reduced, on average, for these individuals. 

The red dashed line, measured on the right vertical axis, represents the total population living in 

areas where TKBs are closer than hospitals. The numbers displayed along this red line indicate 

the number of block groups benefiting in each deployment scenario. A block group is a small 

geographic area, and the metric demonstrates how many such areas have improved access as 

more TKBs are deployed. It is observed that the average travel time saved generally falls within 

the range of 20 to 32 minutes, indicating a significant reduction in travel distance for individuals 

accessing healthcare services at TKBs. Early deployments (e.g., 1- 12 TKBs) lead to rapid 
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improvements in travel time saved, rising from approximately 24 minutes with one TKB to over 

33 minutes with 12 TKBs. This suggests that initial deployments are highly effective in reducing 

travel times for those who previously faced long distances to the nearest hospital. After 12 

TKBs, the average travel time saved begins to fluctuate, reflecting the challenges of equitably 

deploying kiosks to cover underserved areas while maintaining efficiency. These fluctuations 

suggest that equitable placement may prioritize populations with varying needs, leading to 

uneven but targeted reductions in travel time. From TKB 20 onward, the average travel time 

saved stabilizes at around 25–28 minutes, highlighting diminishing returns in travel time 

improvements as the system approaches saturation in coverage. Observing the trend in the red 

dashed line, it is shown that the total population benefiting from the closest TKB access 

increases steadily with the deployment of additional kiosks, reaching approximately 90,000 by 

TKB 25 and stabilizing thereafter. This indicates that most of the population that can benefit 

from equitable TKB deployment has been reached by this point. The number of block groups 

benefiting follows a similar trend, rising sharply from 12 block groups with one TKB  to 71 

block groups by seven TKBs. Beyond this point, the increase slows, with the number of block 

groups plateauing at approximately 85–89 by 25-30 TKBs. This stabilization reflects that the 

deployment has effectively addressed previously underserved areas.  

These findings suggest that the largest gains in both average travel time saved and 

population coverage occur in the first 10–15 TKBs. These initial deployments target the most 

underserved areas, yielding substantial improvements in access. Beyond 20 TKBs, the benefits 

of additional deployments diminish. The average travel time saved stabilizes, and the population 

benefiting from closer TKBs grows only marginally. This suggests that most block groups have 

already been reached, and further deployments have limited incremental impact. The fluctuations 
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in saved travel time after 10 TKBs suggest that equitable placement prioritizes populations with 

varying needs. While this ensures underserved areas are reached, it may result in less consistent 

efficiency improvements. In this case, policymakers should consider the diminishing returns 

when expanding the network beyond 20–25 TKBs. At this stage, additional investments may be 

better directed toward improving service quality or addressing barriers to healthcare access 

within already-covered areas. 

Finally, Figure 6.6 presents the geographic placement of TKBs for different deployment 

scenarios (2, 3, 4, and 5 TKBs) under varying levels of equity constraints, from "No equity 

enforced" to an equity tolerance of 0.1 (the strictest lower tolerance values of 0.05 results in 

infeasibility for seven or less TKBs). "No equity is enforced" focuses solely on maximizing 

efficiency, placing TKBs in areas with the highest demand or shortest travel distances without 

considering equity. Increasingly stricter equity tolerances (e.g., 0.2, 0.15, and 0.1) introduce 

constraints to ensure that underserved areas receive higher priority, often redistributing TKBs to 

achieve a more balanced geographic coverage. Each row in Figure 6.6 corresponds to a different 

number of TKBs (2 through 5), showing the evolution of geographic allocation as more 

resources are deployed. Each column represents a specific equity tolerance level, illustrating how 

stricter equity constraints affect the placement of TKBs. Points on the map represent different 

block groups. Points with the same color belong to the same block group. The TKBs (markers) 

are positioned to meet deployment and equity goals. 
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Figure 6.6 Geographic distribution of TKBs under varying equity levels (no equity enforced to 
strict equity tolerance of 0.1) for deployments of 2, 3, 4, and 5 TKBs. The maps highlight the 

impact of equity constraints on the spatial allocation of TKBs, prioritizing underserved areas as 
equity tolerance becomes stricter. 

 

When equity is not considered, TKBs are concentrated in regions with the highest 

demand or efficiency (e.g., densely populated areas). As equity constraints tighten, TKB 

placement shifts to prioritize underserved areas. For example, with an equity tolerance set to 0.1, 

TKBs are more evenly distributed across the region, prioritizing access for underserved 

populations that might otherwise be overlooked if the sole objective were to maximize total 
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coverage. It is observed that strict equity constraints (e.g., 0.1) ensure underserved areas receive 

access but may leave some high-demand areas underserved, potentially limiting system 

efficiency. Relaxed equity constraints (e.g., 0.2 or none) maximize efficiency but exacerbate 

disparities, leaving remote populations at a disadvantage. The maps underscore the importance of 

balancing equity and efficiency in healthcare planning. For limited resources, striking a balance 

between equity and efficiency is crucial, as overly strict equity constraints can reduce system-

wide benefits. With more TKBs, stricter equity constraints can be enforced without significantly 

sacrificing efficiency. 

6.3 Managerial Insights and Conclusion 

This chapter provides a decision-aid tool for policy makers to design an equitable and 

efficient rural TKB network. The findings of this chapter provide actionable insights for 

policymakers, healthcare administrators, and planners involved in deploying TKBs in 

underserved regions. The results emphasize the importance of balancing equity and efficiency, 

tailoring deployment strategies to resource availability, and considering the unique needs of 

different populations. The key takeaways and conclusions are categorized below: 

6.3.1 Trade-offs Between Equity and Efficiency 

Relaxing equity constraints allows for resource concentration in high-demand areas, 

maximizing the total population served. However, strict equity constraints distribute resources 

more evenly, prioritizing underserved areas at the cost of efficiency. In resource-limited 

scenarios, however, overly strict equity constraints can reduce overall service coverage, as 

resources are spread thinly across regions. A moderate approach to equity constraints ensures 

that underserved populations receive access while minimizing efficiency losses. Policymakers 
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should dynamically adjust equity thresholds based on the availability of resources and the 

specific characteristics of the target population. 

6.3.2 Resource Sufficiency and Diminishing Returns 

As the number of deployed TKBs increases, the trade-offs between equity and efficiency 

diminish, with accessibility improving across all demographics. However, diminishing returns 

become evident after enough TKBs (e.g., 25 TKB in West-Central case study) are deployed, with 

marginal gains in coverage and accessibility. For resource-rich scenarios, stricter equity 

constraints can be applied without significantly compromising efficiency, enabling equitable 

access across underserved areas. Further investments in additional kiosks yield limited benefits. 

Instead, resources could be redirected toward improving service quality or addressing specific 

barriers in already-served regions. 

6.3.3 Accessibility and Travel Time 

The deployment of additional TKBs consistently reduces average and maximum round-

trip travel times, enhancing accessibility. However, stricter equity constraints result in slightly 

higher travel times as resources are distributed to underserved areas. Equitable placement of 

TKBs can address long-standing accessibility gaps for remote populations, but careful planning 

is needed to avoid increasing travel burdens for others. Strategies such as mobile TKBs or 

supplementary services can mitigate the impact of stricter equity constraints, ensuring 

accessibility for the farthest locations. 

6.3.4 Demographic Disparities in Accessibility 

Children and Seniors consistently experience the lowest Accessibility Index (AI) 

compared to Middle-Aged individuals and Young Adults, reflecting unique barriers such as 

reliance on caregivers and mobility challenges. Tailored interventions are required to address the 
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specific needs of vulnerable groups, such as family-centered healthcare for children and 

technology training or transportation support for Seniors. Future equity metrics could incorporate 

demographic subgroups alongside geographic considerations to create more inclusive resource 

allocation frameworks. 

6.3.5 Geographic Allocation of TKBs 

Stricter equity constraints lead to a more balanced geographic distribution of TKBs, 

prioritizing underserved areas. However, this may leave high-demand regions underserved when 

resources are scarce. Geographic equity constraints should be carefully calibrated to ensure that 

underserved areas receive access without neglecting regions with high service demand. Resource 

allocation policies should incorporate both geographic and demographic considerations to 

optimize outcomes. 

In summary, this chapter provides a comprehensive optimization framework for 

designing equitable and efficient TKB deployment strategies in rural healthcare systems. The 

findings highlight the importance of balancing equity and efficiency, dynamically adjusting 

resource allocation policies based on resource availability, and tailoring solutions to the needs of 

specific populations. By incorporating equity thresholds, accessibility goals, and demographic 

insights, policymakers can ensure that telehealth systems maximize their impact while 

addressing longstanding disparities in healthcare access. 

Ultimately, this study underscores the need for context-sensitive strategies that align 

resource allocation with the dual goals of equity and efficiency. These insights can serve as a 

foundation for developing resilient and inclusive healthcare systems that meet the needs of 

diverse populations, paving the way for improved access to care in underserved regions. 
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Future research can explore alternative objective functions to examine how competing 

goals of equity and efficiency could be balanced and further refine deployment strategies for 

TKBs. For instance, objectives such as minimizing total travel times or minimizing total inequity 

could be considered. Furthermore, alternative ways of quantifying inequity beyond the Gini 

index—such as range, variance, or coefficient of variation—could be incorporated. Researchers 

could also explore the impact of setting equity or access-based goals as constraints while 

optimizing other measures of efficiency, such as minimizing average travel times. This direction 

would offer deeper insights into how different objective functions and equity definitions 

influence deployment outcomes. 

Additionally, future work could incorporate more intricate dynamics of existing 

healthcare facilities and their interactions with TKBs. For example, integrating detailed demand 

patterns and facility-specific constraints, such as capacity limits or existing geographic service 

coverage, could yield more robust decision-making tools. Such models could examine how 

TKBs complement or compete with traditional facilities, particularly in regions where healthcare 

systems are already strained. This would enable a more granular understanding of how TKBs can 

alleviate pressure on existing systems while ensuring equitable access. 

Moreover, expanding the scope of analysis to include temporal dynamics, such as peak 

usage periods or seasonal demand variations, could provide actionable insights into optimizing 

TKB deployments over time. Incorporating uncertainties, such as fluctuating demand or 

operational disruptions (e.g., weather conditions or staffing shortages), could further enhance the 

applicability of these decision-support tools. 

Finally, future research could investigate the integration of emerging technologies, such 

as mobile TKBs, drones for last-mile delivery, or advanced data analytics to dynamically 



153 

 

monitor and adjust deployment plans. These advancements could provide more adaptive, 

resilient, and scalable solutions to address disparities in healthcare access. By broadening the 

focus to include these additional factors, researchers can develop more comprehensive 

frameworks that better align with the complexities of real-world healthcare systems. 
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Chapter 7 Summary and Conclusion 

This chapter synthesizes the key findings and insights from the preceding analyses, 

emphasizing the strategic deployment of Telehealth Kiosks/Booths (TKBs) to enhance 

healthcare access and equity in rural regions. The research integrates empirical data, advanced 

modeling techniques, and practical applications to address the unique challenges of healthcare 

delivery in underserved areas. 

7.1 Key Findings and Contributions 

This study makes several important contributions to the understanding and optimization 

of Telehealth Kiosk/Booth (TKB) deployment to improve healthcare access in rural areas. The 

findings bridge gaps between empirical evidence, advanced modeling, and practical applications, 

offering actionable insights for policymakers and healthcare administrators. Below are the 

primary findings and contributions from the analysis: 

1. The study highlights significant disparities in healthcare accessibility in rural areas, 

where long travel times and sparse facilities limit access. TKBs show promise as a 

solution to reduce these disparities, especially for underserved populations, by offering 

localized and convenient healthcare options. 

2. This study has empirically derived travel time decay functions to provide a realistic basis 

for understanding patients’ willingness to travel for healthcare services. These functions 

account for demographic and geographic differences, enabling more accurate and 

targeted placement of TKBs. 

3. The continuous approximation modeling approach implemented in this research 

highlights the critical influence of travel time decay in shaping system performance and 

demonstrates that simplified, well-calibrated travel behavior models can effectively 
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inform TKB deployment strategies. Case studies reveal that a network of TKBs can 

significantly reduce travel times and serve large portions of the rural population, with 

effectiveness depending on local factors such as user density, existing healthcare 

facilities, and patient willingness to adopt TKBs. These findings emphasize the 

transformative potential of TKBs in addressing rural healthcare access challenges, 

particularly in regions with limited healthcare options. 

4. The proposed discrete optimization model and the analysis underscore the trade-offs 

between equity and efficiency, showing that strict equity constraints ensure underserved 

populations are prioritized, albeit at the cost of system-wide efficiency. Conversely, 

relaxed constraints maximize overall coverage but risk neglecting vulnerable regions. 

The results also highlight diminishing returns beyond a certain number of TKBs, 

suggesting that additional resources are better allocated toward improving service quality 

or addressing barriers in already-served areas. Equitable placement strategies, when 

complemented with targeted solutions like mobile TKBs, can effectively balance 

accessibility and efficiency across demographic and geographic disparities. 

5. Data-driven analysis suggests that strict equity constraints prioritize underserved areas 

but may reduce system-wide efficiency. Relaxed equity constraints maximize total 

population coverage but can exacerbate disparities, underscoring the need for balanced 

approaches. 

7.2 Practical Implications for Policymakers 

The findings of this study offer actionable guidance for policymakers and healthcare 

administrators seeking to enhance access and equity in rural healthcare systems through the 

strategic deployment of Telehealth Kiosks/Booths (TKBs). These implications emphasize the 
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importance of targeted resource allocation, flexibility in deployment strategies, and evidence-

based decision-making to ensure the effective and equitable delivery of healthcare services. 

7.2.1 Strategic Deployment 

Policymakers should prioritize the placement of TKBs in areas with the greatest need, 

particularly in regions where long travel times to existing healthcare facilities serve as a 

significant barrier. Identifying high-priority areas requires a thorough understanding of local 

demographic and geographic characteristics, including the distribution of underserved 

populations, existing healthcare infrastructure, and travel patterns. By focusing on regions with 

high travel burdens, TKB deployment can have the greatest immediate impact, addressing 

disparities in access and improving healthcare equity. 

7.2.2 Dynamic Equity Targets 

Equity considerations must be tailored to the specific context and resource availability of 

each deployment scenario. Policymakers should adopt dynamic equity thresholds that balance 

the need to prioritize underserved populations with the goal of maintaining overall system 

accessibility and efficiency. In resource-limited scenarios, overly strict equity constraints may 

spread resources too thinly, reducing overall coverage. Conversely, in resource-rich 

environments, stricter equity targets can be enforced without significantly compromising 

efficiency, ensuring that vulnerable populations are adequately served. This flexible approach 

allows for the optimization of healthcare delivery in diverse rural settings. 

7.2.3 Scalable and Flexible Solutions 

Investments in scalable and flexible solutions, such as mobile or modular TKBs, can 

address dynamic population needs and evolving healthcare demands. Mobile TKBs can serve as 

a bridge for regions with temporary or seasonal population shifts, ensuring continuous access to 
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care. Similarly, modular TKBs can be deployed in phases, allowing for incremental scaling 

based on changes in population density, demand, or healthcare priorities. These adaptable 

solutions provide policymakers with tools to respond effectively to shifting needs and optimize 

resource allocation. 

7.2.4 Data-Driven Decision-Making 

Leveraging empirical data and advanced modeling techniques is critical to designing 

effective TKB deployment strategies. Data-driven approaches ensure that decisions are informed 

by realistic assessments of healthcare demand, patient behavior, and accessibility barriers. The 

use of travel time decay models, equity metrics, and optimization algorithms provides a robust 

foundation for evaluating the trade-offs between equity and efficiency. By incorporating real-

world insights and predictive analytics, policymakers can make informed choices that maximize 

the impact of TKB deployments while addressing systemic disparities. 

7.3 Future Research Directions 

 This study provides a robust foundation for optimizing the deployment of 

Telehealth Kiosks/Booths (TKBs) in rural areas, but it also highlights several avenues for future 

exploration to further enhance the effectiveness and equity of healthcare delivery systems. 

Advancing this research will require innovative approaches that integrate emerging technologies, 

examine long-term impacts, and refine metrics for equity and resource allocation. 

7.3.1 Integration of Emerging Technologies 

The integration of cutting-edge technologies such as Artificial Intelligence (AI) and 

drones with TKB systems presents significant opportunities to transform healthcare delivery. AI 

can enhance service delivery by optimizing real-time resource allocation, personalizing patient 

care, and predicting healthcare needs based on demographic and geographic data. For instance, 
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AI-driven analytics can help identify regions most in need of TKBs or suggest adaptive 

deployment strategies in response to shifting demand. 

Drones, on the other hand, can complement TKBs by addressing logistical challenges in 

rural areas. They can be used for delivering medical supplies, such as medications, vaccines, or 

diagnostic samples, to remote locations where access is limited. The integration of TKBs and 

drones offers a promising avenue for creating resilient and adaptive healthcare systems capable 

of responding to emergencies, seasonal healthcare demands, and chronic care needs. 

7.3.2 Longitudinal Studies 

While this study focuses on the immediate and short-term impacts of TKB deployment, 

longitudinal studies are essential for assessing the sustained effects on healthcare access and 

equity over time. These studies could explore how the adoption of TKBs evolves as populations 

become more familiar with their use, and as healthcare needs and demographic profiles change. 

Long-term data would also provide insights into the durability and adaptability of TKB systems 

in addressing healthcare disparities and the extent to which they mitigate barriers like travel time 

and resource scarcity. Moreover, longitudinal research could evaluate the broader socio-

economic impacts of TKB deployments, such as improved health outcomes, increased patient 

satisfaction, and potential cost savings for healthcare systems. These studies would provide 

valuable evidence for scaling TKB networks and integrating them more deeply into healthcare 

infrastructure. 

7.3.3 Exploration of Alternative Equity Measures 

The study primarily uses the Gini index to evaluate equity in healthcare access, but future 

research could explore alternative measures and their implications for resource allocation. 

Metrics such as range, variance, or coefficient of variation could provide different perspectives 
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on disparities and may be better suited to certain contexts. Additionally, equity measures that 

incorporate demographic factors, such as age, income, or health status, could enable more 

nuanced and inclusive resource allocation frameworks. Investigating the use of multi-criteria 

equity metrics that balance geographic and demographic disparities could offer policymakers 

more comprehensive tools for designing equitable healthcare systems. For instance, combining 

geographic access metrics with demographic vulnerability indices could help prioritize areas 

with the highest healthcare needs, ensuring that resource allocation strategies are both equitable 

and efficient. 

7.3.4 Impact of Evolving Healthcare Models 

Future research could also examine the role of TKBs within evolving healthcare delivery 

models, such as omnichannel systems that integrate virtual care, mobile units, and traditional 

healthcare facilities. Understanding how TKBs fit into these broader systems and how they 

interact with other healthcare channels could inform strategies for creating cohesive and efficient 

networks that maximize patient access and satisfaction. 

7.4 Concluding Remarks 

This report demonstrates the transformative potential of Telehealth Kiosks/Booths 

(TKBs) in addressing healthcare disparities in rural areas. By strategically balancing equity and 

efficiency, TKB deployments can significantly enhance access for underserved populations 

while optimizing resource allocation. The integration of advanced modeling techniques and 

empirical data provides actionable insights for policymakers, emphasizing the importance of 

tailoring deployment strategies to local needs and leveraging innovative solutions like mobile 

units and emerging technologies. 
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Looking ahead, the findings serve as a foundation for advancing healthcare delivery 

systems that are equitable, efficient, and adaptable. By building on these insights, future research 

and policy efforts can ensure that TKB networks continue to evolve to meet the diverse 

healthcare needs of rural populations. With strategic investments and collaboration among 

stakeholders, TKBs can play a central role in creating more inclusive and resilient healthcare 

systems. 
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Appendix A Supplementary Analysis for Chapter 6 – Southern Region Case Study 

 

Figure A.1 Total Expected Users and Population with Long Travel Times in Southern region. 
The left axis illustrates the maximum expected covered population for different levels versus 
various inequity tolerance 𝜖𝜖. The secondary axis shows the population that experiences travel 

times longer than 30 minutes to the nearest TKB. 
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Figure A.2 Analysis of the Accessibility Index (AI) for TKB Deployment in Southern region: 
The left panel presents the overall AI trend, showing the minimum, maximum, and average 

accessibility indices as the number of deployed TKBs increases. The right panel illustrates the 
distribution of AI across different age groups (Seniors, Middle-Aged, Young Adults, and 

Children) for various numbers of deployed TKBs, highlighting the varying accessibility levels 
for each demographic. 

 

 

Figure A.3 Maximum expected covered demand in Southern region versus the number of 
deployed TKBs, with varying Gini index values indicating different levels of equity in healthcare 

access distribution. 
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Figure A.4 Impact of the Number of Telehealth Kiosks/Booths (TKBs) and Gini Index (GI) 
Constraints in Southern region on Average and Maximum Round-Trip Travel Times: The left 

panel shows how average travel times decrease with increasing TKBs, with stricter GI 
constraints slightly increasing travel times due to prioritization of equity. The right panel 

illustrates the maximum travel times for the farthest locations, highlighting the trade-off between 
equity (stricter GI constraints) and efficiency (lower travel times) and the diminishing returns as 

TKB numbers increase. 

 

 

Figure A.5 Average saved travel time (left axis) and total population benefiting from closer 
proximity to Telehealth Kiosks/Booths (TKBs) than the nearest hospital (right axis) under the 

most equitable deployment strategy for 1–30 TKBs in Southern region. Numbers on the red line 
indicate the number of block groups benefiting from closer access. 
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