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 Abstract 

 This report presents an optimization framework designed to enhance rural healthcare 

logistics through the integration of multi-modal transportation networks, including drones and 

ground vehicles. The study focuses on improving the delivery of medical supplies from 

decentralized pick-up locations to a set of identical destination locations in a centralized manner, 

addressing challenges such as high transportation costs, excessive travel distances, and 

inefficiencies in uncoordinated systems. 

A novel model is developed that integrates a predictive function of weather-based energy 

consumption into the optimization framework. This weather-aware modeling approach ensures 

safer and more reliable drone operations by accounting for energy consumption variations based 

on weather conditions and time of arrival at a location. By leveraging optimization modeling, the 

proposed framework achieves cost reductions of up to 99% and reduces total travel distances by 

over 88%. Drones, integrated into the delivery network, enable efficient workload distribution, 

faster deliveries, and improved accessibility in regions with limited infrastructure. 

A case study forms the foundation of validating the proposed model, focusing on the centralized 

delivery of test kits from multiple locations to a lab. By optimizing routes, schedules, and 

resource allocation, the study demonstrates significant reductions in operational costs as well as 

delivery times compared to the baseline decentralized delivery system. 

The research evaluates several scenarios, including single-vehicle operations, multi-vehicle 

configurations, and drone integration, as well as comparisons between weather-aware and non-

weather-aware models. The results highlight the trade-offs between cost-efficiency and 

reliability, with weather-aware systems offering enhanced safety and predictability despite 

marginally higher costs. 



x 

This study provides actionable insights for decision-makers, emphasizing the transformative 

potential of centralized planning, multi-modal transportation systems, and predictive modeling 

integrated with optimization techniques. The findings address critical transportation and 

logistical challenges in healthcare, offering a scalable framework for redesigning delivery 

networks to ensure efficiency, equity, and accessibility. These insights extend beyond healthcare 

to inform transportation solutions in other sectors, such as disaster response and agriculture, 

underscoring the importance of innovative approaches in resource-constrained and disruption-

prone environments. 
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Chapter 1 Introduction 

1.1 Background and Motivation 

The healthcare supply chain is a cornerstone of global health systems, facilitating the 

timely delivery and accessibility of essential medical supplies and medications to healthcare 

facilities worldwide (Kruk et al., 2018). A well-functioning healthcare supply chain is 

indispensable for building sustainable, efficient, and equitable health systems, which are critical 

for global health security and human survival (Backman et al., 2008). Despite its significance, 

the healthcare supply chain is fraught with challenges, particularly in rural and underserved 

areas. Inadequate infrastructure, difficult terrains, traffic congestion, and high vehicle 

maintenance costs undermine the reliability of traditional truck-based delivery methods (Wang et 

al., 2022). These barriers perpetuate disparities in healthcare access, leaving vulnerable 

communities at heightened risk. Addressing these inequities requires innovative approaches that 

enhance delivery efficiency, resilience, and equity in resource distribution. 

Rural areas, where over 60 million people—roughly one-fifth of the U.S. population—

reside, exemplify the acute challenges of last-mile healthcare delivery (Douthit et al., 2015). 

These regions face unique difficulties, including geographic isolation and limited transportation 

infrastructure, that amplify the barriers outlined in the broader healthcare supply chain context 

(Skillman et al., 2010). Lengthy distances, rugged terrains, and severe weather conditions further 

complicate the delivery of essential medical resources, frequently resulting in delays in providing 

life-saving medications, vaccines, and equipment (Morris et al., 2022). Addressing the 

challenges in rural healthcare delivery is not only critical for reducing health disparities but also 

for ensuring the resilience of the healthcare system during emergencies, such as pandemics, 

when rapid and efficient supply chain solutions are paramount.   
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Technological advancements in drone technology have shown immense potential to 

address the logistical barriers of last-mile delivery in healthcare supply chains (Jeon et al., 2022). 

Drones, or unmanned aerial vehicles (UAVs), are valued for their speed, flexibility, and 

environmentally friendly design, which enable them to navigate challenging environments such 

as rugged terrains and isolated regions (Lamptey and Serwaa, 2020; Griffith et al., 2023). By 

bypassing the limitations of traditional transport systems, drones can ensure timely delivery of 

critical medical supplies to underserved areas. Trends in logistics, including speed, sustainability, 

flexibility, and automation, highlight the transformative role of drones in reshaping last-mile 

delivery systems (Bosona, 2020; Lim et al., 2018). 

Rural regions, where healthcare access is hindered by inadequate transportation 

infrastructure, long distances, and severe weather, stand to benefit significantly from drone-

enabled delivery. These systems can overcome logistical challenges and improve access to 

essential resources such as medications, vaccines, and life-saving equipment. Research has 

demonstrated the feasibility and benefits of using drones for healthcare delivery during 

emergencies like the COVID-19 pandemic, especially in rural medical centers (Sham et al., 

2022). However, despite the growing interest in the use of drones for healthcare delivery, their 

practical integration into healthcare supply chains remains limited. Operating drones in dynamic 

and unpredictable environments poses significant challenges, with weather conditions emerging 

as a critical constraint (Dorling et al., 2017; Troudi et al., 2018). Adverse and variable weather, 

such as fluctuating wind speeds and directions, can disrupt drone missions by increasing energy 

consumption and limiting operational range (Thibbotuwawa et al., 2019). That said, favorable 

conditions, such as tailwinds aligned with a drone’s flight path, can extend its range and 

efficiency. 
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Current solutions for drone integration often fail to address these operational constraints 

comprehensively, including flight range, payload capacity, and environmental factors such as 

wind and humidity (Chen et al., 2021; Zhang et al., 2021). To maximize the potential of drones 

in healthcare logistics, there is a critical need for robust optimization frameworks that consider 

these factors and the uncertainties in energy consumption. By addressing these gaps, drones can 

be more effectively deployed to enhance healthcare delivery in underserved rural areas, 

transforming access to critical medical resources and building resilient supply chains. 

1.2 Objectives and Organization 

This research is motivated by the transformative potential of integrating drones into 

medical supply chains and the need to address the gap in existing literature, which often 

overlooks the impact of realistic drone flight conditions. The study focuses on optimizing a 

multi-modal medical supply logistics network that combines drones and traditional ground 

vehicles for efficient and reliable transportation. By incorporating the influence of weather 

conditions (e.g., wind magnitude and direction) on vehicle performance, the proposed model 

aims to enhance the resilience and efficiency of healthcare supply chains, especially in resource-

constrained and challenging environments. 

The primary objective of the model is to minimize total supply chain costs, encompassing 

transportation and operational expenses within the medical logistics network. At the operational 

level, the model determines optimal decisions for locations of vehicle recharging/refueling 

during the delivery operation, designing delivery routes, identifying transshipment nodes, and 

scheduling pickup-and-delivery activities. Certain nodes in the network function as operational 

bases, serving as the starting and ending points for vehicle routes, with each vehicle required to 

begin and conclude its journey at its designated base. Although a single link is considered 
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between each pair of nodes for each transportation mode, the model allows for medical orders to 

be transferred between multiple vehicles, enabling seamless transshipment along the delivery 

route. This integration facilitates the efficient use of diverse transportation modes, improving 

overall system performance while addressing the unique challenges of medical supply logistics. 

To account for realistic drone energy consumption into the proposed routing and 

scheduling optimization, the network is segmented into sub-regions using a Voronoi diagram 

based on weather station locations. This segmentation allows for precise energy estimation by 

incorporating weather conditions across the network. Using established formulas, energy 

consumption is calculated for various drone types, and a predictive function integrates dynamic 

weather forecasts to enhance planning accuracy. This predictive function is further embedded 

into the optimization modeling framework, enabling holistic decision-making for efficient and 

reliable operations while addressing energy constraints and environmental variability in drone-

enabled healthcare delivery systems. 

This research is driven by the need to enhance the efficiency, reliability, and resilience of 

medical supply chains through the integration of drone technology and ground transportation. It 

seeks to address key challenges by exploring the following research questions: 

1. How can drone-enabled delivery systems be integrated with traditional ground 

transportation to optimize the efficiency and reliability of medical supply chains in rural 

and resource-constrained regions? 

2. What is the impact of incorporating dynamic weather conditions, such as temperature, 

wind direction and magnitude, on drone energy consumption and the overall performance 

of the medical logistics network? 
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3. What are the optimal configurations for vehicle routing, including the locations to 

recharge/refuel vehicles, transshipment nodes, and delivery schedules, to minimize costs 

and maximize system resilience under uncertain environmental conditions? 

The remainder of this report is organized as follows: Chapter 2 provides a comprehensive 

literature review, covering topics related to vehicle routing problems, drone delivery networks, 

and weather-aware drone delivery systems. Chapter 3 presents a detailed problem description 

and the proposed model formulation. Chapter 4 outlines the case study used to contextualize the 

research. Chapter 5 discusses the numerical results and analysis. Finally, Chapter 6 concludes the 

report with managerial insights, key findings, and suggestions for future research. 
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Chapter 2 Literature Review 

This chapter presents a comprehensive literature review on the key components of our 

research problem, focusing on advancements and challenges in vehicle routing problems, the 

design and operational considerations of drone delivery logistics networks, and the integration of 

weather conditions into drone supply chain optimization models. Structured into three 

subsections, the review explores how these elements intersect in the context of healthcare 

logistics, addressing critical real-world constraints such as energy consumption, payload 

capacities, and environmental uncertainties. By analyzing the current state of the art, this chapter 

identifies significant research gaps in existing models, particularly in their ability to account for 

dynamic weather impacts on drone performance. The review concludes with a summary of these 

gaps and categorizes the most recent studies, highlighting their contributions, limitations, and 

relevance to the development of more robust and practical solutions for healthcare logistics 

optimization. 

2.1 Vehicle Routing Problem and Key Features 

The classical Vehicle Routing Problem (VRP) focuses on determining a set of minimum-

cost routes for a fleet of vehicles to service customer demands, starting and ending at a central 

depot. These models assume a fixed set of vehicles and customers, with costs typically 

determined by distances between locations and fixed expenses associated with vehicle usage. 

A notable extension of the classical VRP is the Pickup-and-Delivery Problem (PDP), 

which introduces additional complexity by requiring vehicles to handle paired customer requests 

for both pickups and deliveries. The objective in PDP is to design minimum-cost routes that 

satisfy all such requests while adhering to pairing constraints (Rais et al., 2014). 
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In many real-world logistics and transportation scenarios, time-sensitive services play a 

critical role (Naccache et al., 2018; Aziez et al., 2020). This necessity leads to the Vehicle 

Routing Problem with Time Windows (VRPTW), which incorporates constraints for time-

specific pickups and deliveries. The integration of time windows adds practical relevance to VRP 

models, enabling their application to scenarios requiring precise scheduling and coordination. 

Some studies in the literature extend the classical VRP by integrating transshipment 

capabilities, where payloads can be transferred between vehicles to enhance routing flexibility 

(Lyu and Yu, 2023). In pickup and delivery problems with transshipment, customer requests can 

be dropped off at designated transshipment stations for temporary storage. Other vehicles can 

subsequently pick up these requests to complete the delivery, improving efficiency and 

adaptability in complex logistics networks. 

Recognizing the critical role of logistics networks in healthcare, several studies have 

focused on pharmaceutical distribution. For example, Campelo et al. (2019) developed a 

distribution network model that accommodates customers requiring multiple daily deliveries and 

different service-level agreements with time windows. Similarly, Liu et al. (2013) proposed two 

mixed-integer programming models for a vehicle routing problem with time windows and 

multiple pickups and deliveries to optimize home healthcare delivery from providers to 

customers. 

Mahmoudi et al. (2019) introduced a mixed-integer programming model for a pickup and 

delivery problem with transfers, incorporating a continuous-time approximation approach using 

cumulative arrival, departure, and on-board count diagrams. Their model included a cumulative 

service state dimension to monitor parcel service status, enhancing system performance insights. 

Wolfinger (2021) further advanced this field by extending the pickup and delivery problem to 
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include time windows, split loads, and transshipments. This approach minimizes total network 

costs, including travel expenses and transshipment costs, while ensuring timely pickups and 

deliveries. The addition of split loads and transshipments provides practical adaptability, 

addressing real-world challenges such as resource constraints and dynamic customer demands in 

logistics networks. In our research, we incorporate the possibility of transshipment between 

vehicles, time windows for pickup and delivery, and paired pickup-and-delivery requests. These 

features allow for a more realistic and flexible approach to modeling and optimizing complex 

healthcare logistics networks. 

2.2 Drone Delivery Networks 

Recently, there has been growing interest in drone delivery logistics networks, with 

studies emphasizing their efficiency in reducing costs and saving time across various industries, 

including healthcare and humanitarian efforts (Zhang et al., 2023). For instance, Betti Sorbelli 

(2024) provided a comprehensive review of drone delivery networks and their applications, 

while Gunaratne et al. (2022) demonstrated the effectiveness of integrating drones into 

healthcare delivery in low-income regions. From a managerial perspective, Stolaroff et al. (2018) 

highlighted that precise implementation of drone-based delivery systems could significantly 

reduce greenhouse gas emissions and energy consumption in the freight sector. 

Several researchers have developed optimization models to address drone routing 

problems, focusing on various operational aspects and objectives. Kim et al. (2021) proposed a 

routing algorithm to identify optimal round-trip routes for drones delivering goods from depots 

to customers, aiming to minimize total delivery distances while accounting for range and payload 

capacities. Similarly, Dorling et al. (2017) introduced two multi-trip VRP models for drone 

delivery: one minimizing costs within a time limit and the other reducing overall delivery time 
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under a budget constraint, both incorporating energy consumption affected by payload and 

battery weight. Other studies, such as those by Thibbotuwawa et al. (2019) and Radzki et al. 

(2019), focused on maximizing customer satisfaction by considering operational factors such as 

time, payload, and battery capacity. 

Another branch of the literature has explored multi-modal logistics networks that 

integrate drones with traditional ground-based vehicles, enabling transshipment between modes 

of transportation. Kim et al. (2024) proposed a multi-modal logistics framework that combines 

the strengths of drones and vehicles for efficient delivery. Wolfinger et al. (2019) developed a 

multi-modal long-haul routing problem incorporating transshipment nodes and pickup and 

delivery time windows, demonstrating that combining short-haul vehicles with long-haul 

transportation can result in significant cost savings, particularly for long-distance deliveries. 

Enayati et al. (2023) introduced a strategic multi-modal vaccine distribution model, optimizing 

the locations of local distribution centers, drone bases, and relay stations while adhering to cold 

chain time limits and drone range constraints. These studies collectively highlight the potential of 

integrated logistics systems to address complex challenges in modern supply chains. 

Addressing flight range limitations in drones, several studies have explored innovative 

solutions. Pinto and Lagorio (2022) examined the expansion of drones’ operational range by 

designing networks with strategically positioned charging stations to enable in-route recharging. 

Tseng et al. (2017) analyzed drone battery performance under varying flight conditions, 

including motion, weight, and wind, and integrated recharging optimization into mission 

planning. Alyassi et al. (2023) developed a machine learning model to optimize energy-efficient 

and time-feasible tours, incorporating recharge scheduling to overcome battery limitations. 

Similarly, Dukkanci et al. (2021) proposed a mixed-integer nonlinear programming model to 
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minimize energy consumption and time-based operational costs in a drone delivery network, 

while Moadab et al. (2022) introduced a mixed-integer linear programming model that utilizes 

public transportation vehicles as mobile charging stations to enhance energy efficiency and 

delivery effectiveness. 

Our research similarly considers drones as part of a multimodal transportation network. 

We address the limitations of drone payload capacity and flight range, as well as the necessity 

for appropriate operational bases for takeoff and landing. Furthermore, the flight range of drones 

can be extended through recharging or refueling stations along the route. Contrary to the general 

literature, we do not treat flight range as a fixed value. Instead, it is linked to the drone battery's 

energy consumption, which is influenced by weather predictions at the time of planning. The 

next section reviews relevant literature that incorporates weather conditions into the optimization 

of drone operation planning. 

2.3 Weather-Responsive Optimization in Drone Supply Chains 

Some researchers have investigated the barriers to adopting drone delivery systems 

(Koshta et al., 2024), identifying key challenges that distinguish drone delivery from traditional 

ground vehicle logistics. A notable challenge is the significant impact of weather conditions on 

drones' operational performance, including energy consumption (Beigi et al., 2022), flight range, 

and flight time. This has led to the development of specialized optimization models (Bocewicz et 

al., 2022). 

Recent studies have incorporated weather effects, either directly or indirectly, into 

optimization frameworks to evaluate and enhance drone performance. For instance, 

Thibbotuwawa et al. (2019) provided a comprehensive analysis of the parameters affecting drone 

energy consumption in routing problems. Similarly, Palazzetti (2021) examined the impact of 
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windy conditions on energy consumption, emphasizing how detours from planned depots and 

routes influence distance traveled. Chen et al. (2023) addressed a vehicle routing problem by 

considering various wind scenarios to evaluate their effects on drone performance. Gürel and 

Serdarasan (2024) explored sustainable last-mile delivery by integrating wind into drone-assisted 

deliveries, analyzing their impact on delivery efficiency across varying scenarios. 

Building on the soft time window VRP proposed by Guerriero et al. (2014) and the 

decision-support approach of Thibbotuwawa et al. (2019) for multi-trip fleet mission planning 

that accounts for weather dependencies, Radzki et al. (2019) extended a VRP by incorporating 

weather-dependent, non-linear energy consumption into a constraint programming framework 

using IBM ILOG. Their model addresses drone route planning under dynamic weather 

conditions and energy constraints, ensuring collision-free deliveries within specified time 

windows while maximizing customer satisfaction and the quantity of goods delivered. In another 

contribution, Cheng et al. (2024) proposed a two-period data-driven scheduling model for drone 

delivery systems. This model integrates uncertain flight times derived from wind observation 

data using a cluster-wise ambiguity set, aiming to minimize the essential riskiness index and 

enhance robustness against weather uncertainties. Initial schedules are determined in the first 

period, with the flexibility to adjust based on updated weather information in the second period. 

To the best of our knowledge, no previous research has explicitly integrated energy 

consumption calculations and predictions into the optimization framework as we have done in 

this study. 

2.4 Summary and Research Gap 

While the reviewed literature highlights advancements in drone delivery networks, 

energy-efficient routing, and multi-modal logistics, gaps remain in developing models that 
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integrate multi-modal transportation, energy constraints, transshipment, and weather-aware 

drone delivery logistics networks, particularly in the medical supply area. Although prior studies 

have explored routing under energy limitations and weather dependencies, they often focus on 

the effects on flight range or delivery time schedules. Existing research has addressed various 

operational challenges such as the impact of battery capacity and payload, time window 

constraints, multi-modal networks, and transshipment operations on total network costs. 

Additionally, some studies have incorporated weather conditions, particularly wind, to assess 

their influence on delivery schedules, battery performance, and flight range. However, none have 

developed a weather-aware drone routing model that explicitly considers drone energy 

consumption as a function of flight time. Table 2.1 summarizes the seminal literature and 

highlights the research gap that this study aims to address. The following abbreviations are used 

in Table 2.1: TC represents total cost, DT stands for delivery time, TT is travel time, TD denotes 

traveled distance, EC refers to energy consumption, R is the risk of late delivery, CS signifies 

customer satisfaction, and NV indicates the number of used vehicles. 

This research aims to minimize the total cost of delivery operations in a multi-modal 

network, including transportation, recharging, and transshipment costs. It does so by optimizing 

routes, selecting recharging station locations, identifying transshipment nodes, and scheduling 

pickups and deliveries, while accounting for vehicles' energy consumption, particularly focusing 

on drones affected by weather conditions. The study offers a linear optimization formulation that 

facilitates the transshipment of orders between vehicles along the route, considering the time 

windows for pickups and deliveries, and vehicle capacities. Notably, it is the first model to 

explicitly incorporate drone energy consumption predictions into the optimization framework. 

The next section describes the problem and presents the proposed formulation.
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Table 2.1 Summary of the most relevant studies 

Reference 

O
bj

ec
tiv

e 
Fu

nc
tio

n 

M
od

el
 T

yp
e Network Setup Transportation Mode Operational Constraints 

Solution 
Approach Transshipment 

Nodes 
Pickup 

Locations 
Recharge 
Stations Drone Conventional Wind Energy 

Capacity 
Time 

Window 
Vehicle 

Capacity 

1 F. Guerriero et al(2014) Min TD, Max 
ACS, Min NV  Non-linear    *    *  Heuristics 

2 Dorling et al(2016) Min TC, Min 
DT Linear    *   * * * Exact 

3 Tseng et al(2017) Min TT Linear   *    * *  Exact 

4 Wolfinger et al(2018) Min TC Linear * *   *   * * Heuristics 

5 Thibbotuwawa et 
al(2019) Max CDF  Non-linear  *  *  * * * * Heuristics 

6 RADZKI(2019) Max CS  Non-linear  *  *  * * * * Heuristics 

7 Dukkanci(2021) Min TC  Non-linear  *  *   * *  Exact 

8 Palazzetti(2021) Min TD Linear    *  * *   Exact 

9 Kim et al(2021) Min TD Linear  *  *     * Exact 

10 Moadab et al(2022) Min EC Linear  * * *   *   Exact 

11 Alyassi et al(2022) Min TT Linear  * * *   * *  Heuristics 

12 Bocewics et al.(2022) Min TT  Non-linear  *  *  * * * * Heuristics 

13 Chen et al(2023) Min TC Linear  *  *  * * * * Heuristics 

14 Enayati et al(2023) Min TC Linear  * * * *  *  * Exact 

15 Cheng et al(2024) Min R Linear  *  *  * * *  Exact 

16 Gurel et al(2024) Min TT Linear  *  *  *  * * Exact 

17 This study(2024) Min TC Linear * * * * * * * * * Exact 
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Chapter 3 Problem Description and Model Formulation 

3.1 Problem Definition 

This study addresses the problem of routing and scheduling orders generated at a set of 

pickup locations to be delivered to identical destinations. The service network consists of nodes 

representing various geographical locations and multi-modal links to efficiently transport 

medical supplies. Nodes can serve multiple functions, such as being both an operational base for 

a vehicle and a pickup site. 

Pickup locations have orders, and destinations are identical, meaning each pickup site can 

send their orders to one of the existing destinations based on the optimal route selected by the 

model. The network includes multiple transportation modes, such as traditional ground vehicles 

and various types of drones, each with a fleet of identical vehicles. Each mode can traverse the 

corresponding links in the network based on availability. A pair of nodes can be connected by 

multiple transportation modes, such as a truck and a small drone, each representing a different 

link. However, there is only one link per transportation mode between each pair of nodes. 

Certain nodes within the network function as operational bases, serving as the starting 

and ending points for vehicle routes. Each vehicle must start and end its journey at its assigned 

operational base after delivering orders and completing its route. Medical orders can also be 

transferred between multiple vehicles at designated transshipment nodes along the delivery route 

if needed. 

Furthermore, the network includes recharging/refueling stations for each mode of 

transportation, allowing vehicles to replenish energy along their routes. To ensure continuous 

and reliable operation, vehicle paths are closely monitored to maintain energy levels above a 

specified threshold. For drones, this may involve rapid battery swaps conducted by personnel, 
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effectively restoring the drone's energy capacity. Cars are refueled/recharged at the nearest 

gas/electric stations. This ensures efficient, reliable, and uninterrupted delivery operations. 

The goal is to minimize total supply chain costs, including transportation, recharging, and 

transshipment operations, by optimizing routes, selecting recharging station locations, 

identifying transshipment nodes, and scheduling pickups and deliveries while accounting for the 

energy consumption of vehicles en route. For ground vehicles, like cars, energy consumption can 

be calculated by considering their miles per gallon (MPG). By multiplying the MPG by the travel 

distance, we can estimate the fuel consumed. For instance, if a car travels 50 miles and has an 

MPG of 25, the energy consumed would be approximately two gallons of fuel. This estimation 

can be adjusted based on travel time, taking into account variations in driving conditions and fuel 

efficiency. For drones, we propose an approach to integrate the prediction of energy 

consumption based on time-dependent weather forecasts into the optimization model—see 

Section 3.3 for more details. 

3.2 Assumptions 

The following assumptions provide the foundation for the model, ensuring it captures the 

critical aspects of operational and practical constraints in medical supply delivery. These 

assumptions reflect real-world conditions to achieve realistic and implementable solutions. 

Pickup and Delivery Configurations. Each order is constrained by a time window, 

meaning pickups must occur after the earliest pickup time at the designated location and 

deliveries must be completed before the latest delivery time at the destination. Each destination 

has a limited capacity to handle only a certain number of orders at any given time. 

Transportation Modes. The availability of vehicles for each mode of transportation 

(e.g., ground vehicles, drones) is predefined, and each vehicle has fixed payload and energy 
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capacities. Vehicles must be recharged or refueled once their energy capacity falls below a 

predefined safety threshold, ensuring uninterrupted operations and mitigating the risk of 

disruptions. 

Operational Bases. All vehicles must begin and end their routes at their designated 

operational bases. For instance, drones must launch from and land at specific drone bases. This 

ensures consistent vehicle management and tracking throughout their routes and aligns with the 

practicalities of fixed base locations within a static service region. 

Recharge Stations. Vehicles are assumed to start fully charged at the beginning of each 

planning period when departing from their operational bases. During operations, vehicles such as 

cars can recharge to their maximum capacity at the nearest gas or charging station. For drones, 

spare batteries are available at recharging stations, enabling quick battery swaps performed by 

trained personnel. This is to ensure that drones can quickly resume operations, minimizing 

downtime. A fixed amount of time is assumed for recharging or battery swapping for all vehicle 

types, irrespective of the station’s location. 

Energy Consumption. For traditional ground vehicles, energy consumption is calculated 

based on fuel efficiency (e.g., miles per gallon) and travel distance. For drones, energy 

consumption depends on time and is influenced by weather conditions. At the beginning of the 

planning period, weather predictions are used to update the drones’ time-based energy 

consumption matrix, ensuring the model captures the effects of prevailing weather, such as wind, 

on energy requirements. The energy consumed when traversing an arc is modeled as a function 

of the arrival time at a location and serves as an input to the optimization model. It is assumed 

that the energy consumption prediction model is accurate and provides reliable inputs for 

planning. 
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Battery Performance Degradation. Drone battery performance is assumed to remain 

constant for the duration of the planning horizon. Any degradation in battery efficiency over time 

or due to repeated charging cycles is not accounted for. 

Transshipment locations. Designated handoff points between ground vehicles and 

drones are given. These locations are equipped with the necessary infrastructure for safe loading 

and unloading of supplies. Also, drones and ground vehicles are assumed to be fully compatible 

with the handoff infrastructure, ensuring smooth and efficient transitions between transportation 

modes. 

Demand Variability. Demand for medical supplies at each location is assumed to be 

known in advance and static for the planning period. Seasonal or unexpected surges in demand 

are not considered in the current model. 

Cost Considerations. It is assumed that the service region is supported by shared 

resources, including ground vehicles and drones of multiple types, operated by third-party 

logistics providers. These operators account for variable costs such as operator fees, vehicle 

maintenance, infrastructure expenses, and other operational overheads. For modeling simplicity, 

all these costs are consolidated and represented as variable costs measured in terms of $/time 

unit.  

Planning Horizon. The decisions are assumed to be made at the operational level, 

covering a finite period during which all orders must be delivered. This timeframe is designed to 

align with the immediate and time-sensitive nature of medical supply deliveries, ensuring that 

demand is met efficiently within the specified duration. 
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3.3 Drone Energy Consumption Calculation 

We calculate the weather-based energy consumption for every drone arc at various times 

throughout the planning horizon (e.g., hourly). Accurate energy consumption estimation is 

critical for operational planning and depends on the dynamic weather conditions affecting drone 

performance. To incorporate localized weather variations, the service region is divided into 

Voronoi regions (VRs), with each region representing the area influenced by a specific weather 

station. These weather stations act as seed points, defining boundaries such that every location 

within a Voronoi region is closer to its respective weather station than to any other station (see 

Figure 3.1). 

 

 

Figure 3.1 Discretization of service area using Voronoi regions 

 

Weather data (including temperature, wind magnitude, and wind direction, etc.) is 

reported by these weather stations at regular intervals (e.g., hourly). Since weather information is 

not available for every individual location in the service area, the conditions observed at the 

weather station are used as a proxy for all locations within its corresponding VR. This 
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partitioning ensures that the weather conditions applied in the energy calculations reflect 

localized variations across the service region. 

Each drone arc is analyzed based on its trajectory through the Voronoi regions. Two 

types of arcs are identified: 

1. Arcs Fully Contained Within a Single Voronoi Region: For arcs whose endpoints lie 

within the same VR, energy consumption is calculated directly using the weather data 

reported for that region at the corresponding time interval. 

2. Interregional Arcs Crossing Multiple Voronoi Regions: For arcs with endpoints in 

different VRs, the arc is divided into segments at the points where it crosses regional 

boundaries (see Figure 3.2). Each segment is assigned to the weather conditions of the 

VR it traverses, and the energy consumption for the entire arc is calculated by summing 

the energy consumed for all its segments. This segmentation ensures that energy 

consumption calculations account for spatial weather variations as the drone crosses 

multiple regions. 
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Figure 3.2 Creating segments on different Voronoi regions for interregional arcs 

 

In this research, we only consider wind magnitude and direction collected from every 

weather station in the service area. To calculate the energy consumed for steady-level drone 

flight, we use the formula (D’Andrea, 2014): 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡= 1
1−Φ𝑡𝑡

�𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟
�, where 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 refers to the 

energy consumed per mile at time t, Φ𝑡𝑡 denotes the ratio of headwind to airspeed, capturing the 

impact of wind resistance, 𝑚𝑚 corresponds to the drone mass including its battery weight and 

payload, 𝑔𝑔 is the acceleration of gravity, 𝑟𝑟 denotes unitless lift to drag ratio reflecting 

aerodynamic efficiency, and 𝜂𝜂 corresponds to the battery and motor power transfer efficiency. 

This formula incorporates key factors that influence energy consumption, including the drone’s 

weight, aerodynamic properties, and the effect of wind. To ensure a conservative approach, we 

assume the drone is fully loaded during calculations, representing the highest possible energy 

consumption for a given arc. 

The energy consumption for each arc is computed at every time interval during the 

planning horizon based on the reported weather conditions. For interregional arcs, segment-level 



 

21 

 

energy consumption is calculated for each VR using the localized weather data, and the total 

energy consumed is obtained by summing the energy for all segments. By integrating spatial and 

temporal weather variations, this method enables precise and reliable energy consumption 

estimation for drone operations, ensuring efficient route planning and robust performance across 

the service region. 

Hence, for each drone arc in the network, energy consumption is calculated for every 

discretized time interval (e.g., hourly) by considering the arc's direction relative to the wind’s 

magnitude and direction during that specific time. This process generates a time series of energy 

consumption values for each arc throughout the planning horizon. These time series data capture 

the dynamic influence of weather conditions on energy usage, allowing for a detailed 

understanding of how weather impacts drone performance over time. 

To integrate this information into the optimization model presented in Section 3.5, a 

prediction function is fitted to the time series data. This function (ℰ𝑗𝑗𝑗𝑗𝑣𝑣 �𝒯𝒯′𝑗𝑗𝑣𝑣�, see Table 3.2) 

estimates the energy consumption on each arc as a continuous function of time, providing an 

essential input for the optimization process. The chosen prediction function must offer an explicit 

and computationally efficient representation of the energy-time relationship to support the 

model’s performance. Importantly, the functional form of the prediction model, along with its 

parameters, is treated as a fixed parameter of the optimization model. However, the energy 

consumption is ultimately defined based on a decision variable: the departure time from a node. 

This ensures that the model dynamically incorporates energy variations as determined by the 

time-dependent nature of drone operations. 

In this research, we apply a linear regression model as the prediction function. A linear 

function simplifies the computational complexity, especially when used in the mixed-integer 
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linear programming (MILP) framework proposed in Section 3.5. Linear functions are 

computationally efficient and allow the optimization solver to handle the time-dependent energy 

constraints more effectively.  

This approach highlights the dual role of the prediction function: (1) providing a 

compact, explicit representation of the energy consumption over time and (2) enabling efficient 

integration into the optimization model to determine optimal drone routes and schedules that 

account for weather-based energy usage. While other forms of prediction functions, such as 

nonlinear or machine learning models, could be explored in future work, the linear regression 

model serves as a practical and effective choice for the current study. 

3.4 Description of Optimization Model Inputs 

The medical supply logistic network under study is represented as a directed network 

including a set of discrete geographic coordination nodes, denoted by 𝒮𝒮, which are 

interconnected by arcs in the set 𝒜𝒜. Each arc in 𝒜𝒜 is represented by a tuple (𝑖𝑖, 𝑗𝑗, 𝑣𝑣), where node 

𝑖𝑖 ∈ 𝒮𝒮 is connected to node 𝑗𝑗 ∈ 𝒮𝒮 via vehicle 𝑣𝑣 ∈ 𝒱𝒱. The set 𝒱𝒱 indicates the available vehicles 

within the network, which include drones of possibly different types and ground transportation 

vehicles. The network includes four types of facility functionalities: (1) Operational bases for 

each vehicle 𝑣𝑣 ∈ 𝒱𝒱, where the vehicle must start and end its route, denoted by O𝑣𝑣 ∈ 𝒮𝒮 and O′𝑣𝑣 ∈

𝒮𝒮, respectively; (2) Recharging stations for each vehicle 𝑣𝑣 ∈ 𝒱𝒱, where vehicles can be recharged 

to be able to continue their routes, represented by nodes in the set 𝒫𝒫𝑣𝑣; (3) Pickup location P(𝑟𝑟) 

for each order 𝑟𝑟 ∈ ℛ, from which the order 𝑟𝑟 must be picked up; and (4) Identical destination 

nodes, denoted by the set 𝒟𝒟, where each order must be delivered to one of these nodes. Each 

node 𝑖𝑖 ∈ 𝒮𝒮 can correspond to one or more than one type of functionality, and the union is 

indicated by 𝒮𝒮 = {O𝑣𝑣 ∪ O′𝑣𝑣 ∪ 𝒫𝒫𝑣𝑣 ∪ P(𝑟𝑟) ∪ 𝒟𝒟}. 
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Each order pickup location generates an order indicated by 𝑟𝑟 ∈ ℛ with a quantity of 

Q(𝑟𝑟). The total amount of orders carried by a vehicle 𝑣𝑣 ∈ 𝒱𝒱 on its associated arcs cannot exceed 

the vehicle’s capacity U𝑣𝑣. Additionally, each destination node 𝑑𝑑 ∈ 𝒟𝒟 can accept a maximum 

order volume of K𝑑𝑑 and the total amount of orders delivered to it can not surpass this limit. The 

cost of transshipping orders on each arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 is represented by C𝑖𝑖𝑗𝑗𝑣𝑣, which is directly 

related to the distance between nodes 𝑖𝑖 and 𝑗𝑗. Parameters 𝜔𝜔𝑣𝑣 and 𝜆𝜆 indicate the costs associated 

with recharging vehicle 𝑣𝑣 ∈ 𝒱𝒱, and transshipping orders between vehicles at a location, 

respectively. 

Each order 𝑟𝑟 ∈ ℛ has a specific time window to be picked up from location P(𝑟𝑟), starting 

at 𝑎𝑎P(𝑟𝑟) as the earliest pickup time, and to be delivered to a destination 𝑑𝑑 ∈ 𝒟𝒟 before 𝑏𝑏𝑟𝑟 as the 

latest order delivery time. Also, 𝑙𝑙𝑑𝑑 indicates the latest time for any order to be delivered to the 

destination 𝑑𝑑 ∈ 𝒟𝒟. The parameter 𝜃𝜃𝑖𝑖𝑗𝑗𝑣𝑣 represents the travel time for vehicle 𝑣𝑣 ∈ 𝒱𝒱 on arc 

(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, while ℎ𝑣𝑣𝑣𝑣 indicates the time required to transship an order from vehicle 𝑣𝑣 ∈ 𝒱𝒱 to 

vehicle 𝑛𝑛 ∈ 𝒱𝒱. Each vehicle 𝑣𝑣 ∈ 𝒱𝒱 has a maximum energy capacity of Emax
𝑣𝑣  and a minimum 

energy reserve requirement of Emin
𝑣𝑣  to ensure operational safety. The energy consumed by a 

vehicle while traveling across the arc (𝑗𝑗,𝑘𝑘, 𝑣𝑣) ∈ 𝒜𝒜 is a function of its departure time from node 

𝑗𝑗 ∈ 𝒮𝒮 and is represented by ℰ𝑗𝑗𝑗𝑗𝑣𝑣 �𝒯𝒯′𝑗𝑗𝑣𝑣� (see Section 3.3 for more detail). The time required for 

recharging each vehicle 𝑣𝑣 ∈ 𝒱𝒱 is denoted by parameter 𝑔𝑔𝑣𝑣. 

The decision variables of the model are all operational, including selection of arcs to 

make delivery routes, order shipments and transshipments, location and time of recharging 

operations, time scheduling of order deliveries and energy management of vehicles to ensure safe 

and reliable operations within the network. Binary variable 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 indicates whether arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈

𝒜𝒜 is included in the route of vehicle 𝑣𝑣 ∈ 𝒱𝒱. The binary variable 𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟  tracks whether order 𝑟𝑟 ∈ ℛ 



 

24 

 

is carried on the arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜. Binary variable 𝒵𝒵𝑖𝑖𝑣𝑣 demonstrates if vehicle 𝑣𝑣 ∈ 𝒱𝒱 is recharged 

at node 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣. Additionally, binary variable 𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 captures whether order 𝑟𝑟 ∈ ℛ is transshipped 

from vehicle 𝑣𝑣 ∈ 𝒱𝒱 to vehicle 𝑛𝑛 ∈ 𝒱𝒱 at node 𝑖𝑖 ∈ 𝒮𝒮, and variable 𝛿𝛿𝑖𝑖 indicates if at least one order 

is transshipped at node 𝑖𝑖 ∈ 𝒮𝒮. Time-related decision variables 𝒯𝒯𝑖𝑖𝑣𝑣 and 𝒯𝒯′𝑖𝑖𝑣𝑣 capture the arrival and 

departure times of vehicles 𝑣𝑣 ∈ 𝒱𝒱 at node 𝑖𝑖 ∈ 𝒮𝒮, respectively. Similarly, energy variables 𝐸𝐸𝑖𝑖𝑣𝑣 and 

𝐸𝐸′𝑖𝑖𝑣𝑣 monitor the remaining energy of the vehicles upon arrival and departure at each node. The 

full notations for sets, parameters, and decision variables of the model are respectively 

summarized in Table 3.1, Table 3.2, and Table 3.3. 

 

Table 3.1 Summary of Input Set Notations 

Notation Description 
ℛ Set of the orders, 𝑟𝑟 ∈ ℛ 
𝒫𝒫𝑣𝑣 Set of the candidate nodes for recharging vehicle 𝑣𝑣 ∈ 𝒱𝒱, 𝒫𝒫𝑣𝑣 ⊂ 𝒮𝒮 
𝒟𝒟 Set of destination nodes within the network, 𝑑𝑑 ∈ 𝒟𝒟 
𝒮𝒮 Set of all nodes in the network, including operational, order pickup, recharging, and 

destination nodes 
𝒱𝒱 Set of all available vehicles in the network, 𝑣𝑣 ∈ 𝒱𝒱 
𝒜𝒜 Set of arcs connecting nodes 𝑖𝑖 ∈ 𝒮𝒮 and 𝑗𝑗 ∈ 𝒮𝒮 via vehicle 𝑣𝑣 ∈ 𝒱𝒱, (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 
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Table 3.2 Summary of Input Parameter Notations 

Parameter Description 
C𝑖𝑖𝑗𝑗𝑣𝑣 Cost of shipping orders through the arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 
ω𝑣𝑣 Cost of recharging vehicle 𝑣𝑣 ∈ 𝒱𝒱 
λ Cost of transshipping an order from one vehicle to another vehicle 

Q𝑟𝑟 Quantity of order 𝑟𝑟 ∈ ℛ 
K𝑑𝑑 Maximum order volume that can be shipped into destination 𝑑𝑑 ∈ 𝒟𝒟 
U𝑣𝑣 Transportation capacity of vehicle 𝑣𝑣 ∈ 𝒱𝒱 

P(𝑟𝑟) Pickup location associated with order 𝑟𝑟 ∈ ℛ 
𝒪𝒪𝑣𝑣 Operational base for vehicle 𝑣𝑣 ∈ 𝒱𝒱 to begin its route, 𝒪𝒪𝑣𝑣 ∈ 𝒮𝒮 
𝒪𝒪′𝑣𝑣 Operational base for vehicle 𝑣𝑣 ∈ 𝒱𝒱 to end its route, 𝒪𝒪′𝑣𝑣 ∈ 𝒮𝒮 
𝑎𝑎𝑃𝑃(𝑟𝑟) Earliest available time for order 𝑟𝑟 ∈ ℛ to be picked up from location P(𝑟𝑟) 
𝑏𝑏𝑟𝑟 Latest allowable time for order 𝑟𝑟 ∈ ℛ to be delivered to a destination 
𝑙𝑙𝑑𝑑 Latest allowable delivery time for any order to be delivered to destination 

𝑑𝑑 ∈ 𝒟𝒟 
𝜃𝜃𝑖𝑖𝑗𝑗𝑣𝑣 Time required for traveling from node 𝑖𝑖 to node 𝑗𝑗 via arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 
𝑔𝑔𝑣𝑣 Time required for recharging vehicle 𝑣𝑣 ∈ 𝒱𝒱 
ℎ𝑣𝑣𝑣𝑣 Time required to transfer orders from vehicle 𝑣𝑣 ∈ 𝒱𝒱 to vehicle 𝑛𝑛 ∈ 𝒱𝒱 
Emin
𝑣𝑣  Minimum energy reserve required for vehicle 𝑣𝑣 ∈ 𝒱𝒱 during its route to 

ensure safety 
Emax
𝑣𝑣  Maximum energy capacity of vehicle 𝑣𝑣 ∈ 𝒱𝒱 
M A positive large number 
𝜎𝜎 Small penalty for a later arrival time at a location 

ℰ𝑗𝑗𝑗𝑗𝑣𝑣 �𝒯𝒯′𝑗𝑗𝑣𝑣� Function to calculate energy consumption for vehicle 𝑣𝑣 ∈ 𝒱𝒱 departing from 
node 𝑗𝑗 ∈ 𝒮𝒮 to node 𝑘𝑘 ∈ 𝒮𝒮 at variable time 𝒯𝒯′𝑗𝑗𝑣𝑣 
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Table 3.3 Summary of Decision Variable Notations 

Decision 
Variable 

Description 

𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 Equal to 1 if arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 is selected to interconnect nodes 𝑖𝑖 ∈ 𝒮𝒮 and 𝑗𝑗 ∈
𝒮𝒮 via vehicle 𝑣𝑣 ∈ 𝒱𝒱; 0 otherwise 

𝑌𝑌𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟  Equal to 1 if order 𝑟𝑟 ∈ ℛ is transited from node 𝑖𝑖 to node 𝑗𝑗 through arc 
(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜; 0 otherwise 

𝒵𝒵𝑖𝑖𝑣𝑣 Equal to 1 if vehicle 𝑣𝑣 ∈ 𝒱𝒱 is recharged at node 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣; 0 otherwise 
𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣 Equal to 1 if node 𝑖𝑖 ∈ 𝒮𝒮 precedes node 𝑗𝑗 ∈ 𝒮𝒮 in the route of vehicle 𝑣𝑣 ∈ 𝒱𝒱 
𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 Equal to 1 if order 𝑟𝑟 ∈ ℛ is transferred from vehicle 𝑣𝑣 ∈ 𝒱𝒱 to vehicle 𝑛𝑛 ∈ 𝒱𝒱 

at node 𝑖𝑖; 0 otherwise 
𝛿𝛿𝑖𝑖 Equal to 1 if at least one order is transshipped from one vehicle to another at 

node 𝑖𝑖 ∈ 𝒮𝒮; 0 otherwise 
𝒯𝒯𝑖𝑖𝑣𝑣 Arrival time of vehicle 𝑣𝑣 ∈ 𝒱𝒱 at node 𝑖𝑖 ∈ 𝒮𝒮 
𝒯𝒯′𝑖𝑖𝑣𝑣 Departure time of vehicle 𝑣𝑣 ∈ 𝒱𝒱 from node 𝑖𝑖 ∈ 𝒮𝒮 
𝐸𝐸𝑖𝑖𝑣𝑣 Remaining energy for vehicle 𝑣𝑣 ∈ 𝒱𝒱 upon arrival at node 𝑖𝑖 ∈ 𝒮𝒮 
𝐸𝐸′𝑖𝑖𝑣𝑣 Remaining energy for vehicle 𝑣𝑣 ∈ 𝒱𝒱 upon departure from node 𝑖𝑖 ∈ 𝒮𝒮 

 

3.5 Mathematical Formulation 

In this section, we present the model formulation. The objective function, represented by 

Equation (3.1), aims to minimize the total operational costs, which include transportation, 

recharging, and transshipment costs. Fixed costs are not considered in the objective function 

because the planning horizon is short for the operational decision-making level, and a third-party 

service provider is assumed to manage the vehicles using existing facility locations. The final 

term in the objective function incentivizes early arrivals and minimizes slack in the time 

variables. It also establishes a trade-off between delivery cost and timeliness. 

min𝑇𝑇𝑇𝑇 = � C𝑖𝑖𝑗𝑗𝑣𝑣
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 + � � ω𝑣𝑣

𝑖𝑖∈𝒫𝒫𝑣𝑣𝑣𝑣∈𝒱𝒱

𝒵𝒵𝑖𝑖𝑣𝑣 + �𝜆𝜆
𝑖𝑖∈𝒮𝒮

𝛿𝛿𝑖𝑖 + � �𝜎𝜎
𝑣𝑣∈𝒱𝒱𝑖𝑖∈𝒮𝒮

𝒯𝒯′𝑖𝑖𝑣𝑣 
(3.1) 

The remainder of this section presents the constraints, grouped according to their focus. 
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Vehicle Routing Constraints. Constraints (3.2) through (3.4) define the feasible routes 

and the corresponding arcs within the network. Constraints (3.2) ensures that if a vehicle 𝑣𝑣 ∈ 𝒱𝒱 

departs from its operational base located at node 𝑖𝑖 = 𝒪𝒪𝑣𝑣, it travels to one subsequent node 𝑗𝑗 ∈ 𝒮𝒮 

via the available arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜. Similarly, constraints (3.3) specify that if vehicle 𝑣𝑣 ∈ 𝒱𝒱 

departs from its operational base, it must return to its corresponding operational base 𝑙𝑙 = 𝒪𝒪′𝑣𝑣 

upon completing its route via one of the available arcs (𝑗𝑗, 𝑙𝑙, 𝑣𝑣) ∈ 𝒜𝒜. Constraints (3.4) enforce 

that if a vehicle visits an intermediate node 𝑗𝑗 ∈ 𝒮𝒮, which is not part of the vehicle’s operational 

bases, it must immediately depart from 𝑗𝑗 via an available arc (𝑗𝑗, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜. 

Constraints (3.5) through (3.7) address sub-tour elimination constraints, enforcing 

precedence relationships between nodes through linear ordering. To achieve this, a binary 

variable 𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣 is defined, where 𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣=1 if node 𝑖𝑖 ∈ 𝒮𝒮 precedes node 𝑗𝑗 ∈ 𝒮𝒮 in the route of vehicle 

𝑣𝑣 ∈ 𝒱𝒱, otherwise 𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣=0. Constraints (3.5) specify that for an arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, which neither 

originates from nor terminates at the operational bases of vehicle 𝑣𝑣 ∈ 𝒱𝒱, variable 𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣 is equal 

to 1 only if node 𝑖𝑖 is connected to node 𝑗𝑗 via vehicle 𝑣𝑣. Equation (3.6) prohibits the immediate 

reversal of arcs, ensuring that if vehicle 𝑣𝑣 traverses arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, it cannot subsequently 

traverse the reverse arc (𝑗𝑗, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜. Constraints (3.7) prevent the formation of sub-tours at non-

operational nodes, maintaining route continuity. 

� 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

≤ 1, ∀𝑖𝑖 = 𝒪𝒪𝑣𝑣,  𝑣𝑣 ∈ 𝒱𝒱 (3.2) 

� 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

= � 𝒳𝒳𝑗𝑗𝑗𝑗𝑣𝑣
(𝑗𝑗,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

, ∀𝑖𝑖 = 𝒪𝒪𝑣𝑣 ,  𝑙𝑙 = 𝒪𝒪′𝑣𝑣,  𝑣𝑣 ∈ 𝒱𝒱 (3.3) 

� 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

= � 𝒳𝒳𝑗𝑗𝑖𝑖𝑣𝑣
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

, ∀𝑗𝑗 ∈ {𝒮𝒮 | 𝒪𝒪𝑣𝑣,𝒪𝒪′𝑣𝑣},  𝑣𝑣 ∈ 𝒱𝒱 (3.4) 
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𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 ≤ 𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣, ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, 𝑖𝑖 ≠ 𝒪𝒪𝑣𝑣 , 𝑗𝑗 ≠ 𝒪𝒪′𝑣𝑣 (3.5) 

𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣 + 𝒲𝒲𝑗𝑗𝑖𝑖𝑣𝑣 = 1, ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣), (𝑗𝑗, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜, 𝑖𝑖 ≠ 𝒪𝒪𝑣𝑣, 𝑗𝑗 ≠ 𝒪𝒪′𝑣𝑣 (3.6) 

𝒲𝒲𝑖𝑖𝑗𝑗𝑣𝑣 + 𝒲𝒲𝑗𝑗𝑗𝑗𝑣𝑣 + 𝒲𝒲𝑗𝑗𝑖𝑖𝑣𝑣 ≤ 2, ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣), (𝑗𝑗, 𝑙𝑙, 𝑣𝑣), (𝑙𝑙, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜, 𝑙𝑙 ∈ 𝒮𝒮, 𝑖𝑖, 𝑗𝑗 ≠ 𝒪𝒪𝑣𝑣, 𝑙𝑙 ≠ 𝒪𝒪′𝑣𝑣 (3.7) 

 
Order Delivery Constraints. Here we outline the constraints designed to track each 

order as it moves through the network. Constraints (3.8) ensure that order 𝑟𝑟 ∈ ℛ is picked up 

from its designated pickup location P(𝑟𝑟) by one of the available vehicles in the network, while 

equation (3.9) guarantees that the picked-up order 𝑟𝑟 will be delivered to one of the destination 

nodes. Constraints (3.10) specify that if order 𝑟𝑟 is transshipped to a node that is not a destination, 

it must be forwarded out of that node. Constraints (3.11) indicate that order 𝑟𝑟 can be transshipped 

from node 𝑖𝑖 to node 𝑗𝑗 via vehicle 𝑣𝑣 only if arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 is available in the network. 

� 𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

= 1, ∀𝑟𝑟 ∈ ℛ, 𝑖𝑖 = P(𝑟𝑟) (3.8) 

� 𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

= � 𝒴𝒴𝑖𝑖′𝑗𝑗′𝑣𝑣𝑟𝑟

(𝑖𝑖′,𝑗𝑗′,𝑣𝑣)∈𝒜𝒜,𝑗𝑗′∈𝒟𝒟

, ∀𝑟𝑟 ∈ ℛ, 𝑖𝑖 = P(𝑟𝑟) (3.9) 

� 𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟
(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

= � 𝒴𝒴𝑗𝑗𝑖𝑖𝑣𝑣𝑟𝑟
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

, ∀𝑟𝑟 ∈ ℛ, 𝑗𝑗 ∈ {𝒮𝒮|𝒟𝒟, P(r)} (3.10) 

𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟 ≤ 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 , ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜,  𝑟𝑟 ∈ ℛ (3.11) 

Capacity Constraints. Constraints (3.12) and (3.13) impose limits to maintain feasibility 

regarding vehicle and destination capacities. Constraints (3.12) ensure that the total quantity of 

orders transported through arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 does not exceed the available capacity of vehicle 𝑣𝑣. 

Similarly, constraints (3.13) guarantee that the total quantity of orders delivered to each 

destination 𝑗𝑗 ∈ 𝒟𝒟 remains within the allowable capacity of that destination. 
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� Q𝑟𝑟
𝑟𝑟∈ℛ

𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟 ≤ U𝑣𝑣𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 , ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 (3.12) 

� � Q𝑟𝑟
𝑟𝑟∈ℛ(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

𝒴𝒴𝑖𝑖𝑗𝑗𝑣𝑣𝑟𝑟 ≤ K𝑗𝑗 , ∀𝑗𝑗 ∈ 𝒟𝒟 (3.13) 

Transshipment Constraints. The proposed model assumes that orders can be 

transshipped between vehicles at non-destination nodes. In this context, constraints (3.14) 

specify that a transshipment occurs at a non-destination node 𝑖𝑖 ∈ 𝒮𝒮 if order 𝑟𝑟 ∈ ℛ arrives at node 

𝑖𝑖 via vehicle 𝑣𝑣 ∈ 𝒱𝒱 through arc (𝑗𝑗, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜 and is subsequently shipped from node 𝑖𝑖 ∈ 𝒮𝒮 to 

node 𝑗𝑗′ ∈ 𝒮𝒮 using vehicle 𝑛𝑛 ∈ 𝒱𝒱 via arc (𝑖𝑖, 𝑗𝑗′,𝑛𝑛) ∈ 𝒜𝒜. Constraints (3.15) calculate the variable 

𝛿𝛿𝑖𝑖, which determines whether at least one order is transshipped at node 𝑖𝑖 ∈ 𝒮𝒮. Constraints (3.16) 

ensure that vehicle 𝑛𝑛 ∈ 𝒱𝒱 cannot depart from node 𝑖𝑖, where at least one transshipment is 

occurring from vehicle 𝑣𝑣 ∈ 𝒱𝒱 to vehicle 𝑛𝑛, until vehicle 𝑣𝑣 has arrived at node 𝑖𝑖 and the orders 

have been transferred to vehicle 𝑛𝑛. 

� 𝒴𝒴𝑗𝑗𝑖𝑖𝑣𝑣𝑟𝑟
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

+ � 𝒴𝒴𝑖𝑖𝑗𝑗′𝑣𝑣𝑟𝑟

(𝑖𝑖,𝑗𝑗′,𝑣𝑣)∈𝒜𝒜

≤ 𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 + 1, ∀𝑖𝑖 ∈ 𝒮𝒮|𝒟𝒟, 𝑟𝑟 ∈ ℛ, 𝑣𝑣 ∈ 𝒱𝒱,𝑛𝑛 ∈ 𝒱𝒱, 𝑣𝑣

≠ 𝑛𝑛 

(3.14) 

𝛿𝛿𝑖𝑖 ≥ �� � �𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣

𝑣𝑣∈𝒱𝒱𝑣𝑣∈𝒱𝒱𝑟𝑟∈ℛ

� /M, ∀𝑖𝑖 ∈ 𝒮𝒮 (3.15) 

𝑇𝑇𝑖𝑖𝑣𝑣 + �ℎ𝑣𝑣𝑣𝑣
𝑟𝑟∈ℛ

𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 − 𝑇𝑇′𝑖𝑖𝑣𝑣 ≤ M(1 − 𝛿𝛿𝑖𝑖), ∀𝑖𝑖 ∈ 𝒮𝒮|𝒟𝒟,  𝑣𝑣 ∈ 𝒱𝒱,  𝑛𝑛 ∈ 𝒱𝒱,  𝑣𝑣 ≠ 𝑛𝑛 (3.16) 

Time Constraints. The constraints (3.17) define the relationship between the arrival and 

departure time of a vehicle at node 𝑖𝑖 ∈ 𝒮𝒮, incorporating the operational activities performed at 

that node. Each vehicle 𝑣𝑣 ∈ 𝒱𝒱 is assumed to be rechargeable at designated recharging stations 

within the set 𝒫𝒫𝑣𝑣. That is, they guarantee that vehicle 𝑣𝑣 ∈ 𝒱𝒱 departs from node 𝑖𝑖 after its arrival 

time at node 𝑖𝑖 plus the time required for operational activities. If 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣, operational activities 
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can include recharging and load or unload during order transshipment operations, otherwise, if 

𝑖𝑖 ∉ 𝒫𝒫𝑣𝑣, load or unload can be the only operational activities to be performed at node 𝑖𝑖. 

Constraints (3.18) ensure that if node 𝑖𝑖 ∈ 𝒮𝒮 is connected to node 𝑗𝑗 ∈ 𝒮𝒮 via arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, 

vehicle 𝑣𝑣 arrives at node 𝑗𝑗 after departing from node 𝑖𝑖 and traveling for 𝜃𝜃𝑖𝑖𝑗𝑗𝑣𝑣 hours. Constraints 

(3.19) and (3.20) impose time window restrictions on each order. Constraints (3.19) ensure that 

vehicle 𝑣𝑣 ∈ 𝒱𝒱 does not pick up order 𝑟𝑟 ∈ ℛ before the predefined earliest pickup time for the 

order’s pickup location P(r), while constraints (3.20) ensure that order 𝑟𝑟 is delivered to 

destination 𝑖𝑖 ∈ 𝒟𝒟 via vehicle 𝑣𝑣 no later than the specified delivery time for order 𝑟𝑟 and the latest 

delivery time acceptable for the destination 𝑖𝑖. 

⎩
⎪
⎨

⎪
⎧𝒯𝒯′𝑖𝑖𝑣𝑣 ≥ 𝒯𝒯𝑖𝑖𝑣𝑣 + 𝑔𝑔𝑣𝑣𝒵𝒵𝑖𝑖𝑣𝑣 + �ℎ𝑣𝑣𝑣𝑣

𝑟𝑟∈ℛ

(𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 + 𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣), ∀𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣, 𝑣𝑣 ∈ 𝒱𝒱,𝑛𝑛 ∈ 𝒱𝒱,𝑛𝑛 ≠ 𝑣𝑣

𝒯𝒯′𝑖𝑖𝑣𝑣 ≥ 𝒯𝒯𝑖𝑖𝑣𝑣 + �ℎ𝑣𝑣𝑣𝑣
𝑟𝑟∈ℛ

(𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣 + 𝛾𝛾𝑖𝑖𝑟𝑟𝑣𝑣𝑣𝑣), ∀𝑖𝑖 ∈ 𝒮𝒮|𝒫𝒫𝑣𝑣,𝑣𝑣 ∈ 𝒱𝒱,𝑛𝑛 ∈ 𝒱𝒱,𝑛𝑛 ≠ 𝑣𝑣
 (3.17) 

𝒯𝒯′𝑖𝑖𝑣𝑣 + 𝜃𝜃𝑖𝑖𝑗𝑗𝑣𝑣 − 𝒯𝒯𝑗𝑗𝑣𝑣 ≤ M�1 −𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣�, ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 (3.18) 

𝑎𝑎P(𝑟𝑟) ≤ 𝒯𝒯′𝑖𝑖𝑣𝑣, ∀𝑟𝑟 ∈ ℛ, 𝑖𝑖 = P(𝑟𝑟),𝑣𝑣 ∈ 𝒱𝒱 (3.19) 

𝒯𝒯𝑖𝑖𝑣𝑣 ≤ 𝑚𝑚𝑖𝑖𝑛𝑛(𝑏𝑏𝑟𝑟 , 𝑙𝑙𝑖𝑖) � 𝒴𝒴𝑗𝑗𝑖𝑖𝑣𝑣𝑟𝑟
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

+ M�1 − � 𝒴𝒴𝑗𝑗𝑖𝑖𝑣𝑣𝑟𝑟
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

� , ∀𝑖𝑖 ∈ 𝒟𝒟, 𝑣𝑣 ∈ 𝒱𝒱, 𝑟𝑟 ∈ ℛ (3.20) 

Energy Constraints. Constraints (3.21) and (3.22) ensure energy sufficiency and 

operational safety for vehicles. Constraints (3.21) guarantee that the remaining energy of vehicle 

𝑣𝑣 ∈ 𝒱𝒱 upon departing from any node does not exceed its maximum predefined energy capacity, 

while constraints (3.22) ensure that upon arriving at a node, vehicle 𝑣𝑣 has at least a minimum 

predefined energy level to maintain safety. Constraints (3.23) specify that each vehicle is fully 

charged when it starts its trip from its operational base. Constraints (3.24) ensure that vehicle 𝑣𝑣 ∈

𝒱𝒱 can only be recharged at node 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣 if there is an available path to node 𝑖𝑖 via the arc 
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(𝑗𝑗, 𝑖𝑖, 𝑣𝑣) ∈ 𝒜𝒜. Constraints (3.25) and (3.26) indicate that if vehicle 𝑣𝑣 ∈ 𝒱𝒱 is recharged at node 𝑖𝑖 ∈

𝒫𝒫𝑣𝑣, its energy upon departure from node 𝑖𝑖 will be the maximum energy capacity. Constraints 

(3.7) state that energy level for vehicle 𝑣𝑣 ∈ 𝒱𝒱 upon departure from node 𝑖𝑖 ∈ 𝒮𝒮 is equal to its 

energy level upon arrival to node 𝑖𝑖 if recharge does not happen. Constraints  (3.8) and (3.9) 

ensure that if arc (𝑗𝑗,𝑘𝑘, 𝑣𝑣) ∈ 𝒜𝒜 is available, the remaining energy of vehicle 𝑣𝑣 ∈ 𝒱𝒱 upon arriving 

at node 𝑘𝑘 is equal to its energy upon leaving node 𝑗𝑗 minus the energy consumed during the flight. 

𝐸𝐸′𝑖𝑖𝑣𝑣 ≤ Emax
𝑣𝑣 , ∀𝑖𝑖 ∈ 𝒮𝒮,  𝑣𝑣 ∈ 𝒱𝒱 (3.1) 

𝐸𝐸𝑖𝑖𝑣𝑣 ≥ Emin
𝑣𝑣 , ∀𝑖𝑖 ∈ 𝒮𝒮,  𝑣𝑣 ∈ 𝒱𝒱 (3.2) 

𝐸𝐸′𝑖𝑖𝑣𝑣 ≥ Emax
𝑣𝑣 � 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣

(𝑖𝑖,𝑗𝑗,𝑣𝑣)∈𝒜𝒜

, ∀𝑖𝑖 = 𝒪𝒪𝑣𝑣, 𝑣𝑣 ∈ 𝒱𝒱 (3.3) 

𝒵𝒵𝑖𝑖𝑣𝑣 ≤ � 𝑋𝑋𝑗𝑗𝑖𝑖𝑣𝑣
(𝑗𝑗,𝑖𝑖,𝑣𝑣)∈𝒜𝒜

, ∀𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣, 𝑣𝑣 ∈ 𝒱𝒱 (3.4) 

𝐸𝐸′𝑖𝑖𝑣𝑣 − 𝐸𝐸𝑖𝑖𝑣𝑣 ≤ M𝒵𝒵𝑖𝑖𝑣𝑣, ∀𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣, 𝑣𝑣 ∈ 𝒱𝒱 (3.5) 

𝐸𝐸′𝑖𝑖𝑣𝑣 ≥  E𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣 𝒵𝒵𝑖𝑖𝑣𝑣, ∀𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣, 𝑣𝑣 ∈ 𝒱𝒱 (3.6) 

𝐸𝐸′𝑖𝑖𝑣𝑣 − 𝐸𝐸𝑖𝑖𝑣𝑣 ≥ 0, ∀𝑖𝑖 ∈ 𝒮𝒮, 𝑣𝑣 ∈ 𝒱𝒱 (3.7) 

𝐸𝐸′𝑗𝑗𝑣𝑣 − ℰ𝑗𝑗𝑗𝑗𝑣𝑣 �𝒯𝒯′𝑗𝑗𝑣𝑣� ≤ 𝐸𝐸𝑗𝑗𝑣𝑣 + M�1 −𝒳𝒳𝑗𝑗𝑗𝑗𝑣𝑣�, ∀𝑣𝑣 ∈ 𝒱𝒱, (𝑗𝑗,𝑘𝑘, 𝑣𝑣) ∈ 𝒜𝒜 (3.8) 

𝐸𝐸′𝑗𝑗𝑣𝑣 − ℰ𝑗𝑗𝑗𝑗𝑣𝑣 �𝒯𝒯′𝑗𝑗𝑣𝑣� ≥ 𝐸𝐸𝑗𝑗𝑣𝑣 − M�1 −𝒳𝒳𝑗𝑗𝑗𝑗𝑣𝑣�, ∀𝑣𝑣 ∈ 𝒱𝒱, (𝑗𝑗,𝑘𝑘, 𝑣𝑣) ∈ 𝒜𝒜 (3.9) 

The next chapter presents the case study used in this research to verify and validate the 

proposed model’s performance.  
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Chapter 4 Chapter 4 Shield Illinois Case Study Data 

During the global COVID-19 pandemic, Shield Illinois emerged as a pioneering initiative 

led by the University of Illinois System. Its mission was to deploy an innovative saliva-based 

COVID-19 test to serve schools, universities, community centers, and the public across Illinois. 

We apply our proposed model to a case study based on operations from Shield, with pickup site 

locations including schools, colleges, and universities where COVID-19 tests were conducted. 

The samples collected from these pickup sites were transported to diagnostic labs, treated as 

identical but capacitated destinations. This chapter provides detailed information about Shield 

Illinois, their operations, and the processes involved in building the case study. This case study 

serves as the foundation for the input data used in verifying and validating the proposed model, 

as well as for deriving valuable insights in the next chapter. 

 

 

Figure 4.1 Saliva-based covid Shield COVID-19 test 

 

4.1 Shield Illinois: An Overview 

Shield Illinois (referred to as “Shield” for brevity) is the University of Illinois System’s 

initiative to make the innovative saliva-based Shield COVID-19 test (see Figure 4.1) available to 

1,779 K-12 schools, 57 universities and community colleges, and the public across the state of 
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Illinois with 77 community-based sites (see Figure 4.2). This initiative, created in response to an 

urgent public health crisis, successfully delivered over seven million tests between July 2020 and 

June 2023. With a network of 13 diagnostic laboratories and a logistics system spanning a 400-

by-200-mile area, Shield Illinois maintained an impressive 16-hour average turnaround time, 

processing between 10,000 and 14,000 samples daily during peak periods. This efficiency far 

outpaced other testing programs, which often required two to three days to deliver results. While 

all testing centers were located in Illinois, the Shield T3 program extended operations to 

Kentucky and Wisconsin, utilizing existing labs to meet the rising demand during critical 

periods. 

 

 

Figure 4.2 Statewide logistics network of Shield; left map shows the labs and transportation 
sites; right map shows all test site locations. 
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It was formed urgently during the global pandemic to save lives in Illinois. With 13 labs 

networked together and a 400-by-200-mile logistics system, including the Chicago metropolitan, 

Shield ran over seven million total tests between July 2020 and June 2023. Shield maintained 16-

hour average turnaround times even during peak periods, compared to other testing programs 

that delivered in two to three days. Each lab processed between 10,000 and 14,000 samples daily 

during peak periods of the pandemic. 

4.1.1 The Testing Process 

The saliva-based testing process began with specimen collection at over 2,000 testing 

centers across Illinois. Saliva samples, referred to as "specimens", were collected in test tubes 

and transported to diagnostic labs for analysis. Upon arrival at the labs, the specimens underwent 

sample preparation, as saliva could not be directly tested using PCR methods. This preparation 

involved heating the saliva and combining it with a buffer and detergent to create "samples," 

which were then transferred to 96-well plates. These plates, referred to as "Plate 96", each 

contained one sample per well and were loaded into PCR machines for testing. The test results 

were subsequently delivered to individuals, enabling timely health interventions. 

4.1.2 Transport and Tracking 

Shield’s transport and tracking system ensured efficient specimen movement from 

collection sites to labs. At the core of this system was the "manifest", a digital tracking 

mechanism used to monitor specimens from each testing center. A manifest was created when 

testing began at a location and closed at the end of the day. The size of a manifest varied 

depending on testing volume, ranging from a single specimen to large batches. Multiple 

manifests could also originate from the same location on a given day. 
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Specimens were first transported to a centralized depot in Darien, IL, often referred to as 

"Lab 12". At the depot, specimens were manually sorted and assigned to specific labs based on 

workload and processing efficiency. This sorting process ensured balanced workloads across 

Shield’s 13 labs and minimized delays. Some testing centers dispatched specimens at specific 

times during the day, while others waited until testing concluded. 

The depot played a crucial role in load balancing and ensuring quicker turnaround times. 

Once sorted, specimens were sent to the designated labs for processing, often bypassing direct 

routes to optimize logistics. 

4.1.3 Lab Operations and Network Capacity 

Shield Illinois operated a network of 13 diagnostic labs, with facilities distributed across 

Illinois and additional locations in Kentucky and Wisconsin to manage peak volumes. The labs 

varied in size, capacity, and resources, including the number of technicians and available 

equipment. For instance, the lab at Loyola University utilized existing infrastructure to expedite 

setup, while Shield T3 labs in Kentucky and Wisconsin supported overflow during periods of 

increased demand. 

Each lab processed between 10,000 and 14,000 samples daily during peak periods, 

ensuring rapid turnaround times even under significant pressure. The labs’ ability to maintain 

consistent performance was critical to Shield’s success and exemplified the program’s 

adaptability and efficiency. 

4.1.4 Serving the Community 

Shield Illinois provided testing services to a wide range of institutions, including K-12 

schools, colleges, universities, and community centers. Community center selection was guided 

by the Social Vulnerability Index (SVI), ensuring equitable access to testing for underserved 
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populations. Schools identified under Tiers 1 and 2 of evidence-based funding criteria received 

free testing, further emphasizing the program’s commitment to equity. 

4.1.5 Impact and Legacy 

Shield Illinois demonstrated a highly effective response to a global health crisis, setting a 

benchmark for large-scale, rapid diagnostic testing programs. By combining innovative saliva-

based testing with a streamlined logistics network, the initiative achieved remarkable milestones, 

including same-day delivery of specimens to labs and consistent 16-hour turnaround times. The 

program’s efficiency, scalability, and commitment to public health made it a critical tool in 

combating the pandemic, saving countless lives, and establishing a model for future public health 

initiatives. 

4.2 Data Sets and Data Processing 

To support the development and validation of the proposed model, we utilized a variety 

of datasets that capture different aspects of Shield Illinois’s COVID-19 testing operations. These 

datasets, encompassing millions of records, provided insights into the logistical, operational, and 

testing processes across the initiative. Each dataset brought unique attributes essential for 

analyzing and modeling the intricate system. The following outlines the datasets, their 

characteristics, and the steps taken to process and prepare the data for use. 

The data included critical components such as specimen and sample information, plate 

processing details, equipment data, testing center records, and manifests tracking the 

transportation of specimens. Specimen and sample datasets were among the largest, documenting 

the lifecycle of specimens from collection at testing centers to results processing in labs. Key 

attributes included timestamps marking collection, transport, and result generation, as well as 

IDs linking specimens to samples. To clarify relationships, we ensured that each specimen 
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corresponded to a single sample, resolving confusion arising from the interchangeable use of 

these terms in operational data. 

Plate and equipment datasets tracked the technical aspects of sample processing. The 

plate data captured the movement of samples through testing equipment, recording attributes 

such as plate IDs, associated technician IDs, and timestamps. Meanwhile, the equipment dataset 

provided information about the machines used in labs; though some fields, such as equipment 

types, had missing or inconsistent entries that required careful examination and resolution. 

Testing center and manifest data provided a spatial and temporal view of operations. 

Testing centers were identified by their SHIELD IDs, geocodes, and operational details. The 

manifest data tracked specimens from testing sites to labs, offering insights into transportation 

times, routes, and load balancing. Some manifests indicated specimens were routed through a 

centralized depot, where sorting occurred to manage lab workloads efficiently. 

Additional datasets included records of specimen rejection, providing reasons such as 

canceled orders or failure to meet collection standards. Depot rerouting data detailed the manual 

sorting of specimens, ensuring timely delivery to appropriate labs. Account and opportunity data 

from Shield’s CRM offered contextual information about testing site categories, geolocations, 

and operational settings. 

Processing and cleaning this data involved multiple steps to ensure accuracy and 

reliability. Missing data, particularly in fields such as equipment type and timestamps, was 

addressed by cross-referencing other datasets or excluding incomplete records where necessary. 

Location names were standardized to resolve discrepancies and enable matching across datasets, 

and unique SHIELD IDs and geocodes were assigned to ensure a consistent spatial 
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representation of the network. Relationships between key entities, such as specimens, samples, 

and plates, were validated to ensure logical consistency. 

Timestamps posed particular challenges, as multiple datasets recorded different stages of 

processing. These were carefully aligned and verified to maintain a coherent sequence of events, 

such as manifest creation, transportation, and lab processing. Ambiguities in the data, such as 

plates that appeared in processing records but not in scanning datasets, were flagged for further 

investigation and resolution. 

The processed datasets were then prepared as inputs for the proposed model. Cleaned and 

integrated tables were created, combining attributes such as testing site locations, specimen 

volumes, lab capacities, and turnaround times. Operational constraints, including lab processing 

limits and testing schedules, were defined from the data to align with real-world practices. The 

final datasets were cross-validated against business rules and operational knowledge from Shield 

Illinois to ensure their robustness and suitability for modeling. 

4.3 Case Study and Parameter Calibration 

For this study, we focus on one of the busiest labs and its associated testing sites—over 

60 testing locations—in the southwest rural region of the state (see Figure 4.3). The entire case 

study region includes three Voronoi regions corresponding to three weather stations. During the 

Omicron wave, spanning January 1, 2022, to June 30, 2022, these locations processed between 

10,000 and 14,000 samples per lab per day during peak periods. The study area covers 

approximately 2,022 square miles, including 40 order locations (testing sites) and one laboratory 

as the destination for all orders. The maximum distance between a pickup location and the lab is 

125 miles. Our case study includes the pickup orders on February 9, 2022.  
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Figure 4.3 Service region selected for the case study- southwest area of Illinois State 

 

4.3.1 Shield Delivery System  

The Shield delivery system operated on a point-to-point model, relying on ground 

transport (SUVs and cars) without employing routing optimization strategies. Test samples were 

transported directly from testing sites to the lab throughout the day. This section analyzes the 

delivery statistics to describe trends and potential inefficiencies. 
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Figure 4.4 Histogram of collection times by hour of day 

 

Figure 4.4 illustrates the distribution of collection times from testing sites in the case 

study, when 39 deliveries were made to the lab. The data reveals that the highest frequency of 

collections occurred at 2 PM, with approximately nine collections recorded during this hour. 

This indicates that most testing sites prepared and dispatched their samples between early and 

mid-afternoon. Activity gradually increased throughout the morning, starting at 8 AM, before 

peaking in the early afternoon. After 2 PM, the frequency of collections declined, remaining 

steady between 3 PM and 5 PM, before dropping significantly in the evening. By 6 PM, 

collection activity was minimal, highlighting reduced operations in the late afternoon and 

evening hours. 

This pattern suggests a concentration of collections during specific periods, particularly 

in the mid-afternoon. Such clustering likely creates bottlenecks in transportation and lab 

processing during peak hours, as a large number of samples are transported and processed within 
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a short time frame. Conversely, the low activity observed in the early morning and evening hours 

may result in underutilized transportation resources, leaving room for operational inefficiencies. 

Integrating drones into the delivery system could balance workloads by enabling more 

frequent and flexible collections, reducing peak-hour congestion, and improving transportation 

efficiency. Drones can operate during off-peak hours, addressing reduced evening activity and 

resource limitations, while enhancing speed and reliability in sample delivery. 

 

 

Figure 4.5 Histogram of Delivery Times by Hour of Day 

 

Figure 4.5 illustrates the distribution of delivery times to the lab in the case study. The 

delivery times ranged from the earliest recorded time of 11:31 AM on February 9 to the latest 

delivery time of 6:20 PM on February 10, highlighting that some deliveries extended into the 

next day. The histogram shows that same-day deliveries were heavily concentrated in the late 

afternoon and evening, with a significant peak at 10 PM, emphasizing delays in the delivery 

process. 
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The late delivery patterns and the presence of next-day deliveries reveal inefficiencies in 

the current delivery system. Specifically, 13% of orders and 11% of samples were delivered the 

following day, indicating a gap in synchronizing collection schedules with transportation 

logistics. Moreover, the average ready-to-delivery time—the time elapsed between when a 

delivery was ready for pickup and its arrival at the lab—was approximately 7.57 hours, further 

pointing to a lag in the system. 

When combined with the earlier collection time analysis, this data suggests a mismatch 

between the times samples are collected and when they are transported, leading to prolonged 

delivery times. These delays may contribute to bottlenecks at the lab, reducing processing 

efficiency and potentially affecting the timeliness of test results. Addressing these 

synchronization issues could significantly improve overall efficiency and reduce delivery delays. 

Figure 4.6 and Figure 4.7 depict the distribution of ready-to-delivery times for orders 

(deliveries) and individual samples, respectively. These histograms provide insights into the 

delivery performance and delays within the current logistics system. 

In Figure 4.6, the ready-to-delivery times for orders reveal that the majority (over 70%) 

are delivered within 10 hours. Specific thresholds highlighted in the figure show that 7.69% of 

orders are delivered within 1 hour, 46.15% within 5 hours, and 87.18% within 15 hours. A small 

percentage of orders exceed the 15-hour threshold, pointing to inefficiencies in the delivery 

process. These delays suggest that a significant portion of deliveries falls short of rapid 

fulfillment, highlighting room for improvement in response times. 
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Figure 4.6 Histogram of Ready-to-Delivery Times for Orders. The vertical lines indicate 
thresholds for delivery times with associated cumulative percentages. 

 

 

Figure 4.7 Histogram of Ready-to-Delivery Times for Samples. The vertical lines indicate 
thresholds for delivery times with associated cumulative percentages. 
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Similarly, Figure 4.7 shows the ready-to-delivery times for individual samples, with 

delivery times heavily concentrated within the 10-hour range. The breakdown indicates that 

13.22% of samples are delivered within 1 hour, 43.03% within 5 hours, 69.51% within 10 hours, 

and 89.37% within 15 hours. Like the orders, a smaller portion of samples experience delivery 

delays beyond 15 hours, reflecting limitations in the current system's ability to provide timely 

deliveries. 

The total routing cost for these deliveries was calculated to be $54,307.96, based on a 

marginal cost of $29 per mile for ground transportation. This analysis underscores the constraints 

of the existing point-to-point delivery model, which struggles with both response time and cost 

efficiency. 

These findings again highlight the potential benefits of integrating drones into the 

logistics network. By enabling faster and more flexible deliveries, drones could reduce delivery 

times, particularly for urgent orders and samples, while also offering opportunities to optimize 

routing costs and improve overall system efficiency. This analysis sets the stage for exploring 

how drone integration could address the identified limitations and enhance operational 

performance.  

We completed the case study data by adding car arcs between every pair of nodes and 

drone arcs between every pair of nodes within the same Voronoi region, along with a few drone 

arcs connecting different Voronoi regions. Using the MRCC Climate Database 

(https://mrcc.purdue.edu/CLIMATE/welcome.jsp), we collected weather information and created 

time-series data of energy consumption for every hour of the day, corresponding to the planning 

horizon of the case study. A linear regression model was then fitted to estimate the input function 

https://mrcc.purdue.edu/CLIMATE/welcome.jsp
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmrcc.purdue.edu%2FCLIMATE%2Fwelcome.jsp&data=05%7C02%7Csenayati%40umsl.edu%7Ca5129b16e994423002c908dd221e280e%7Ce3fefdbef7e9401ba51a355e01b05a89%7C0%7C0%7C638704235135581767%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=knOLn4XJnRv5sF8bjhYlwf3jJudNpu57nKlHj9D09x0%3D&reserved=0
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required for the optimization model (refer to Sections 3.3 and 3.5 for more details). Figure 4.8 

shows one example for the fitted function on an interregional arc. 

 

 

Figure 4.8 Time-Depended Energy Consumption on an Interregional Arc. 

 

These estimated functions (with their slopes and intercepts) are added to the case study 

data as input for the optimization model. The next section explores various scenarios to evaluate 

the potential benefits of integrating drones into such a delivery system. 
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Chapter 5 Chapter 5 Computational Experiments 

In this chapter, we evaluate the effectiveness of the proposed optimization model 

introduced in Chapter 3 by applying it to the case study detailed in Chapter 4. This evaluation is 

conducted from both operational and managerial perspectives to ensure a comprehensive 

analysis of its practical applications and implications. 

The primary objectives of this chapter are twofold. First, we aim to provide decision-

makers with actionable insights into the trade-offs between key performance metrics, including 

the total cost of delivery routes and adherence to delivery time schedules. Second, we explore 

broader managerial considerations, such as the environmental impact in terms of emissions, the 

utilization efficiency of different transportation modes, and the computational runtime of the 

solver under varying scenarios and considerations. 

Furthermore, the chapter delves into the strategic benefits of integrating drones into a 

multi-modal transportation network. We discuss how leveraging drones, alongside traditional 

ground vehicles, can enhance the flexibility, responsiveness, and sustainability of delivery 

systems. Additionally, we emphasize the advantages of using an optimization model for 

coordinated routing and scheduling, demonstrating its potential to improve operational efficiency 

and support data-driven decision-making. Finally, the chapter concludes with a critical 

discussion of the limitations inherent in the model.  

5.1 Defining the Experimental Scenarios 

Our experiments are categorized into three main groups to evaluate the performance and 

adaptability of the proposed optimization model under various conditions. These categories and 

their corresponding scenarios are described as follows: 
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(1) Ground Vehicle-Only System (GV): This category evaluates the model's performance 

for a system consisting solely of ground vehicles, with no drones included in the network. 

Configurations in this category involved either one or two cars, each with a large capacity 

considered effectively unlimited within the scope of the loads required for this case study. 

These scenarios provide valuable insights into the operational efficiency, cost-

effectiveness, and scheduling performance of a ground-based transportation system, 

serving as a base case for understanding the capabilities and limitations of traditional 

logistics approaches. 

Scenarios: 

• Scenario 1: Single car for the entire case study region. 

• Scenario 2: Two cars for the entire case study region. 

(2) Weather-Aware Multi-Modal Network (WAMN): This category incorporates drones 

into the logistics network alongside ground vehicles, creating a multi-modal 

transportation system. Configurations tested included one car and either three drones (one 

drone per Voronoi region) or six drones (two drones per Voronoi region). All drones are 

assumed to be identical small quadcopters with a maximum payload capacity of eight 

pounds. The analysis in this category focuses on how weather conditions influence 

energy consumption, operational feasibility, and delivery performance. Explicitly 

accounting for weather-dependent energy consumption highlights the potential of 

weather-aware multi-modal systems to improve cost efficiency and service levels. 

Scenarios: 

• Scenario 3: One car with three drones (one drone per Voronoi region). 

• Scenario 5: One car with six drones (two drones per Voronoi region). 
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(3) Non-Weather-Aware Multi-Modal Network (NWAMN): This category evaluates the 

impact of ignoring weather conditions in logistics planning. We compared the results 

with the benchmark model proposed by Enayati et al. (2023), which assumes that drones 

have a fixed maximum flight range and require recharging after reaching their predefined 

operational limit, with no weather-related energy consumption considerations. By 

contrasting the results from the NWAMN scenarios with those from the WAMN 

category, we assessed the influence of weather-aware modeling on decision variables, 

such as routing and scheduling, as well as on the overall objective function (i.e., total 

cost). This comparison underscores the importance of incorporating weather constraints 

into the design of robust and efficient logistics networks. 

Scenarios: 

• Scenario 4: One car with three drones (one drone per Voronoi region). 

• Scenario 6: One car with six drones (two drones per Voronoi region). 

To implement this category of experiments, we substitute the energy consumption 

constraints (3.21) through (3.29) with the following modified set of constraints: 

𝛥𝛥𝑖𝑖𝑣𝑣 = 0, ∀𝑣𝑣 ∈ 𝒱𝒱, 𝑖𝑖 = 𝒪𝒪𝑣𝑣 (5.10) 

𝛥𝛥𝑖𝑖𝑣𝑣 ≤ 𝛺𝛺𝑣𝑣 ∗ (1 − 𝒵𝒵𝑖𝑖𝑣𝑣), ∀𝑣𝑣 ∈ 𝒱𝒱, 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣 (5.11) 

𝛥𝛥𝑗𝑗𝑣𝑣 + �1 −𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 − 𝒵𝒵𝑖𝑖𝑣𝑣� ∗ 𝛺𝛺𝑣𝑣 ≥ 𝛥𝛥𝑖𝑖𝑣𝑣 + 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 ∗ 𝐿𝐿𝑖𝑖𝑗𝑗𝑣𝑣 , ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜, 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣 (5.12) 

𝛥𝛥𝑖𝑖𝑣𝑣 + 𝒳𝒳𝑖𝑖𝑗𝑗𝑣𝑣 ∗ 𝐿𝐿𝑖𝑖𝑗𝑗𝑣𝑣 ≤ 𝛺𝛺𝑣𝑣 ∀(𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 (5.13) 

In this formulation, the variable 𝛥𝛥𝑖𝑖𝑣𝑣 represents the cumulative distance traveled by 

vehicle 𝑣𝑣 ∈ 𝒱𝒱 upon arriving at node 𝑖𝑖 ∈ 𝒮𝒮. The parameters 𝛺𝛺𝑣𝑣 and 𝐿𝐿𝑖𝑖𝑗𝑗𝑣𝑣 denote the 

maximum distance range that vehicle 𝑣𝑣 ∈ 𝒱𝒱 can travel without recharging and the 

distance between nodes 𝑖𝑖 ∈ 𝒮𝒮 and 𝑗𝑗 ∈ 𝒮𝒮 via vehicle 𝑣𝑣 ∈ 𝒱𝒱, respectively. Constraints (5.1) 
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ensure that the cumulative traveled distance 𝛥𝛥𝑖𝑖𝑣𝑣 is initialized to zero for each vehicle 𝑣𝑣 ∈

𝒱𝒱 at its starting operational base. Constraints (5.2) enforce that the cumulative traveled 

distance by vehicle 𝑣𝑣 ∈ 𝒱𝒱 does not exceed the vehicle’s maximum distance range 𝛺𝛺𝑣𝑣, 

requiring the vehicle to recharge if necessary. Constraints (5.3) calculate the cumulative 

distance traveled by vehicle 𝑣𝑣 ∈ 𝒱𝒱 on its route on the arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜 while resetting it 

in case the vehicle 𝑣𝑣 is recharged at node 𝑖𝑖 ∈ 𝒫𝒫𝑣𝑣. Constraints (5.4) restrict the cumulative 

traveled distance to remain within the vehicle’s maximum range 𝛺𝛺𝑣𝑣, ensuring operational 

feasibility for each arc (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) ∈ 𝒜𝒜.  

Table 5.1, presented below, summarizes the experimental categories and their 

corresponding scenarios described above. It details the specific configurations of vehicles and 

drones used in each scenario, including the allocation of drones across three Voronoi regions in 

the case study, to support the comparative analysis of the proposed logistics strategies. 

 

Table 5.1 Mapping Experiment Categories to Scenarios 

Category Scenario Configuration 

Ground Vehicle-Only System (GV) Scenario 1 1 car  

Scenario 2 2 cars 

Weather-Aware Multi-Modal Network (WAMN) Scenario 3 1 car with 3 drones 

Scenario 5 1 car with 6 drones 

Non-Weather-Aware Multi-Modal Network (NWAMN) Scenario 4 1 car with 3 drones 

Scenario 6 1 car with 6 drones 
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We assume delivery costs of $29 per mile for cars and $20 per mile for drones. 

Additionally, all orders are assumed to be ready for pickup at 8:00 AM and are required to be 

delivered no later than 3:00 PM. We assumed the cost of recharging a drone to be $1 per 

recharge and the cost of transshipment to be $1 per location where transshipment occurs, 

regardless of the number of orders transferred between vehicles. We evaluated the performance 

of all scenarios within each category using key metrics, including total cost, the latest delivery 

time of orders, the total distance traveled by each transportation mode, emissions, and the solver 

runtime required to find optimal solutions. For each scenario, the model was executed across 

multiple operational bases, and the best-case results were reported. 

All numerical experiments were conducted on a high-performance system featuring a 16-

core CPU running at 3.4 GHz with 94 GB of RAM. The optimization model was implemented 

and solved using the Gurobi solver within the Python programming environment. 

5.2 Numerical Results 

In this section, we present the optimal solution configuration and analyze the 

performance measures for the six scenarios outlined in Table 5.1. A detailed comparison of these 

scenarios highlights their relative strengths, weaknesses, and overall effectiveness in meeting the 

operational objectives. The analysis focuses on evaluating key metrics such as cost efficiency, 

delivery timeliness, and environmental impact, while examining how the inclusion of drones and 

weather considerations influences performance. 

5.2.1 Solution Configuration of Ground Vehicle-Only Scenarios (GV Category) 

In the first two scenarios, categorized under Ground Vehicle-Only (GV), only cars are 

available in the network for transportation. Scenario 1 assumes a single car handles all deliveries 

within the service region. The optimization model in this scenario aims to minimize total 
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transportation and recharging costs while adhering to all constraints outlined in Section 3.5, with 

the exception of the transshipment constraints (3.14 through 3.16). Since only one vehicle is 

responsible for all deliveries, transshipment variables are excluded from the model. 

The results for Scenario 1 are illustrated in Figure 5.1, which shows the optimal routes 

determined by the model. The car begins its route at the furthest node from the final destination, 

efficiently servicing intermediate nodes before concluding the trip at the lab. This routing 

strategy minimizes total distance traveled while ensuring timely delivery of supplies. 

 

 

Figure 5.1 Optimal Routes in the Network with One Available Car (Scenario 1). The left, 
middle, and right maps illustrate the optimal routes within Voronoi regions 1, 2, and 3, 

respectively. 

 

Scenario 2 expands upon the configuration of Scenario 1 by introducing a second car into 

the network, allowing for a more detailed analysis of how additional vehicles impact cost, 

delivery time, and overall operational efficiency. This scenario facilitates a comparison between 

single-vehicle and multi-vehicle logistics strategies, offering insights into the trade-offs 

associated with increased fleet size. To accommodate the presence of a second vehicle, the 

optimization model was updated to include transshipment variables in both the objective function 

and the relevant constraints, enabling coordination between the two cars. The optimal solution 
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for Scenario 2 is illustrated in Figure 5.2, where the routes for the two cars are represented by red 

and blue paths. In this optimal configuration, the second car initiates its route from the farthest 

node within Voronoi Region 1 (VR 1) and concludes its trip at the destination node, the lab. This 

routing strategy ensures an efficient division of labor between the two vehicles, reducing total 

delivery time and optimizing resource utilization while adhering to the system's constraints. The 

inclusion of a second car also highlights the operational benefits of distributed routing and 

increased capacity within the network. 

 

 

Figure 5.2 Optimal Routes in the Network with Two Available Cars (Scenario 2). The left, 
middle, and right maps illustrate the optimal routes within Voronoi regions 1, 2, and 3, 

respectively.  

 

It is worth noting that a scenario involving a third car starting in Voronoi Region 2 (VR 

2), resulting in a total of three cars, was also tested but showed that the optimal solution required 

no more than two cars. This was primarily due to the significant distance between VRs 1 and 2 

and VR 3, where the final destination (lab) is located, which made additional cars in distant 

regions cost-inefficient. Additionally, the high capacity of the cars allowed them to handle all 

orders without requiring transshipment. 
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Similar to Figure 5.2, the optimal solution for the other cases of three or more cars 

consistently deployed the second car exclusively within VR 3, the region containing the final 

destination. Adding cars to other regions increased transportation costs without improving 

performance. As a result, scenarios with more than two cars were excluded from further analysis 

due to their lack of cost-effectiveness. 

5.2.2 Solution Configuration of Multi-Modal Coordinated Scenarios (WAMN and NWAMN 

Categories) 

In this subsection, we integrate drones into the network and analyze Scenarios 3 through 

6. The Weather-Aware Multi-Modal Network (WAMN) scenarios include Scenarios 3 and 5, 

which represent the direct implementation of the proposed model described in Section 3.5. To 

evaluate the impact of weather conditions on the network’s performance, we modified the model 

as discussed in Section 5.1, comparing it against a benchmark model. The results for these 

comparisons are reported under Scenarios 4 and 6. 

In Scenarios 3 and 4, one drone was deployed per Voronoi region. Scenario 4 mirrors 

Scenario 3 but does not account for weather conditions, instead assuming a fixed flight range 

regardless of environmental factors. The results for these scenarios are illustrated in Figure 5.3 

and Figure 5.4, respectively. 

As shown in Figure 5.3, the optimal solution for Scenario 3 utilized all drones across the 

regions. This widespread usage of drones was driven by their lower operational cost and the 

favorable impact of weather conditions on energy consumption. Accounting for weather allowed 

drones to operate more efficiently, as favorable conditions reduced energy usage and extended 

their effective range. 
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In contrast, the middle map in Figure 5.4 highlights a limitation in the non-weather-aware 

model used in Scenario 4. It shows that the drone in Voronoi Region 2 (VR 2) could not operate 

in the optimal solution due to the fixed flight range assumption. This restriction demonstrates the 

critical role of weather-aware modeling in enabling drones to adapt to varying environmental 

conditions. When weather is considered, drones benefit from extended operational ranges under 

favorable conditions, improving their utility and cost-effectiveness. Without this consideration, 

the fixed range is strictly proportional to the distance traveled, which significantly limits drone 

usage in regions requiring longer travel distances. This comparison underscores the importance 

of incorporating weather-dependent energy consumption into the optimization model, as it not 

only enhances drone operations but also leads to more efficient and cost-effective solutions for 

the network. 

 

 

Figure 5.3 Optimal Routes for the Weather-Aware Network with One Car and Three Drones 
(Scenario 3). The maps on the left, middle, and right depict the optimal routes within Voronoi 

Regions 1, 2, and 3, respectively. Each drone is assigned to a distinct region, and nodes marked 
with 'T' indicate transshipment points where test kits are transferred from a drone to the car. 
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Figure 5.4 Optimal Routes for the Non-Weather-Aware Network with One Car and Three 
Drones (Scenario 4). The maps on the left, middle, and right depict the optimal routes within 

Voronoi Regions 1, 2, and 3, respectively. Each drone is assigned to a distinct region, and nodes 
marked with 'T' indicate transshipment points where test kits are transferred from a drone to the 

car. 

 

Finally, Figure 5.5and Figure 5.6 depict the routing solutions for Scenarios 5 and 6, 

revealing that the delivery routes and mode utilization are similar between these two scenarios, 

with only minor differences. One noticeable distinction lies in the drone route within Voronoi 

Region (VR) 3, where the order of traversal through three identical locations differs slightly. 

This difference reflects how the two scenarios handle timing and energy optimization for drone 

operations. Since the lab is located in VR 1, packages must be transported from VR 3 through 

VR 2 to reach VR 1. A deeper analysis indicates that Scenario 5 incorporates weather-aware 

considerations for drone energy consumption, factoring in the anticipated weather conditions at 

future locations a drone is scheduled to visit. Specifically, the prediction model for energy 

consumption—dependent on the arrival time at a location—encourages the drone to delay its 

arrival slightly within VRs 2 and 3. This delay allows the drone to take advantage of lower 

energy consumption associated with more favorable weather conditions later in the day. This 

adjustment highlights the sophistication of the weather-aware model, which strives for energy 

efficiency. However, this approach is only realistic if the energy consumption predictions, based 

on the expected weather conditions, are accurate at the time of planning. Otherwise, this reliance 
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on predictive inputs could be seen as a limitation of the model. The model assumes that weather-

related predictions are precise and uses them as a function of arrival time to calculate energy 

consumption for traveling along arcs. Section 5.3 delves deeper into this modeling limitation, 

providing additional examples and discussing possible implications. 

 

 

Figure 5.5 Optimal Routes for the Weather-Aware Network with One Car and Six Drones 
(Scenario 5). The maps on the left, center, and right illustrate the optimal routes within Voronoi 
Regions 1, 2, and 3, respectively. Each region is served by two drones, with nodes marked 'T' 

indicating transshipment points where test kits are transferred from a drone to the car, and node 
marked 'R' denoting drone recharge location. 

 

Another notable difference is the need for drone recharging in Scenario 5, specifically 

within VR 2 (middle map of Figure 5.5). This inclusion of a recharging step makes the planning 

process more realistic and reliable, ensuring that the drones can safely complete their routes 

despite operational constraints. The consideration of recharging further underscores the 

robustness of the weather-aware system in Scenario 5, as it incorporates a critical operational 

detail absent from the non-weather-aware system in Scenario 6. The next subsection will 

compare various performance metrics across different scenarios, providing a detailed evaluation 

of their relative efficiencies and practical implications. 
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Figure 5.6 Optimal Routes for the Non-Weather-Aware Network with One Car and Six Drones 
(Scenario 6). The maps on the left, center, and right illustrate the optimal routes within Voronoi 
Regions 1, 2, and 3, respectively. Each region is served by two drones, with nodes marked 'T' 

indicating transshipment points where test kits are transferred from a drone to the car. 

 

5.2.3 Comparative Analysis of Performance Metrics Across All Scenarios 

In this section, we present the numerical results for each scenario outlined in Table 5.1 

and perform a comprehensive comparison of performance metrics across all scenarios. The 

analysis focuses on several key metrics, including total cost, delivery time of the last order, 

average delivery time, total distance traveled, emissions, and solver runtime. These results are 

summarized in Table 5.2. We then delve into each metric in detail, discussing the outcomes for 

every scenario and providing a comparative analysis. 

The comparative analysis also incorporates the baseline scenario described in Section 4.3 

of Chapter 4. This baseline involves decentralized delivery of test kits, where each pick-up 

location is serviced by a separate car delivering directly to the lab without optimization or shared 

vehicle usage. By comparing the optimized scenarios and baseline, we highlight the value of 

optimization, the impact of integrating drones into the delivery system, and the benefits of 

incorporating weather-related considerations in drone routing and scheduling for a multi-modal 

system. These insights demonstrate the potential improvements in efficiency, sustainability, and 

operational robustness offered by the proposed approach. In the remainder of this subsection, we 
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delve deeper into the analysis, providing detailed insights into each performance metric and 

comparing the results across the scenarios. This includes exploring the implications of the 

findings, discussing their significance, and drawing comparisons to highlight the key differences 

and trade-offs among the scenarios. 

 

Table 5.2 Comparison of Performance Metrics Across All Scenarios 

Scenario Total 
Costs ($) 

Total 
Distance 
(miles) 

Emissions 
(g CO2) 

Latest 
Delivery Time 

Average 
Delivery Time 
(HR) 

Run Time (s) 

Scenario 1 193.22 238.8 1632.5 14:41 6.68 30.3 

Scenario 2 191.78 236.8 1618.5 13:54 4.48 303.3 

Scenario 3 182.42 236.7 1326.5 13:42 4.78 11,975 

Scenario 4 182.26 244.7 1459.08 13:59 5.02 5,287.5 

Scenario 5 172.27 218.2 1042.22 12:26 4.41 19,076 

Scenario 6 169.11 216.2 1042.12 12:19 4.25 5,230 

 

Figure 5.7 provides a comprehensive breakdown of the total costs incurred under six 

scenarios, highlighting the contributions of transportation, transshipment, and recharging costs, 

along with their percentage contributions. The analysis emphasizes the value of optimization, 

shared vehicle usage, drone integration, and the incorporation of weather-aware systems in 

delivery networks. The baseline scenario (as explained in Section 4.3.1 in Chapter 4) reflects the 

practical, decentralized approach where each school transported its own test kits, resulting in a 

total cost of $54,307.96. Comparing this to Scenario 1, which uses a single centralized car for 

delivery, there is a dramatic cost reduction of 99.6% (from $54,307.96 to $193.22). This 

significant improvement highlights the value of optimization and shared vehicle usage, as 
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centralizing operations eliminates redundancy and inefficiencies associated with the 

decentralized system. 

 

 

Figure 5.7 Breakdown of Total Costs Across Scenarios, Highlighting Transportation, 
Transshipment, and Recharging Costs with Percentage Contributions. 

 

Scenario 3 incorporates one drone per region alongside a car, resulting in a total cost of 

$182.42, compared to $193.22 in Scenario 1. This reduction of 5.6% demonstrates the value of 

adding drones to the system. While transportation costs decrease due to drones taking over local 

deliveries, transshipment costs ($2) are introduced, reflecting the need to coordinate operations 

between drones and the car. Scenario 5 increases the number of drones to two per region, with 

weather-aware routing, achieving a total cost of $172.27. Compared to Scenario 3’s cost of 

$182.42, this represents a 5.6% reduction. The additional drones improve workload distribution, 

further reducing transportation costs. However, Scenario 5 incurs slightly higher transshipment 

costs ($3) and a small recharging cost ($1) due to the expanded drone operations. Comparing 

Scenario 1 to Scenario 5 highlights the cumulative benefits of optimization, shared vehicles, and 
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drone integration. The total cost decreases from $193.22 in Scenario 1 to $172.27 in Scenario 5, 

a reduction of 10.8%. This highlights how combining centralized routing and drone integration 

achieves significant cost efficiencies, despite the introduction of minor transshipment and 

recharging costs. 

Scenarios 3 and 4 compare weather-aware and non-weather-aware systems with one 

drone per region. Scenario 3 incurs a total cost of $182.42, while Scenario 4 has a slightly lower 

cost of $182.26. Similarly, Scenario 5 ($172.27) and Scenario 6 ($169.11) reflect this trend. The 

slightly higher costs in weather-aware systems are due to adjustments in vehicle schedules and 

routes to ensure safe operations in varying weather conditions. These adjustments sometimes 

delay deliveries to optimize energy consumption in favorable conditions, as discussed in Section 

5.3. 

Overall, we observe transportation costs dominate the total costs across all scenarios, 

accounting for over 90% in each case. Scenario 1 has the highest transportation cost ($193.22) 

due to reliance on a single car, while Scenario 5 achieves the lowest transportation cost 

($168.27) by distributing the workload across drones and cars. Transshipment and recharging 

costs are minimal but necessary for drone operations. Scenario 5 has the highest transshipment 

cost ($3) and a recharging cost of $1, reflecting the increased complexity of multi-modal 

operations. 

Finally, it is worth noting that the modeling approach includes a limitation in predicting 

energy consumption based on arrival times. In weather-aware systems, vehicle schedules are 

sometimes adjusted to align with favorable weather conditions, which can delay arrivals but 

reduce energy usage. This explains the slightly higher costs and longer delivery times in 
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weather-aware systems (e.g., Scenario 3 vs. 4 and Scenario 5 vs. 6). These trade-offs are 

elaborated in Section 5.3. 

In summary, we observe that the substantial cost reductions achieved through centralized 

optimization and drone integration. Weather-aware systems, while slightly more expensive, 

ensure safer and more reliable operations. For example, in a configuration with one car and one 

drone per region, incorporating weather-aware routing results in costs being 0.09% higher than 

in a system without weather-awareness. Similarly, in a configuration with one car and two 

drones per region, the weather-aware system is 1.9% more expensive than its non-weather-aware 

counterpart. Despite these slight cost increases, the weather-aware system ensures safer 

operations by adapting routes and schedules to varying weather conditions. The configuration 

with one car and two drones per region operating under a weather-aware system emerges as the 

most cost-effective and balanced solution, demonstrating the value of combining optimization, 

drone capacity, and weather-aware routing to achieve efficiency and reliability in delivery 

networks. 

Total Distance. Figure 5.8 illustrates the distances traveled by cars and drones across six 

scenarios, reflecting the impact of different configurations and routing strategies on 

transportation efficiency and workload distribution. Each scenario provides insights into the 

interplay between car-only and multi-modal delivery systems, emphasizing the role of drones 

and weather-aware routing. In Scenarios 1 and 2, the system relies entirely on cars for delivery, 

with Scenario 1 using one car and Scenario 2 employing two cars. The total distances traveled 

are 238.84 miles and 236.80 miles, respectively, accounting for 100% of the travel in both cases. 

The minimal difference between the two scenarios indicates that splitting the workload between 

two cars has a negligible impact on the total travel distance, highlighting the limitations of car-
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only systems when operating without further optimization or additional delivery modes. Scenario 

3 introduces a multi-modal system with one car and three drones (one per Voronoi region) 

operating under weather-aware routing. This results in a substantial reduction in car travel, with 

the car covering 193.76 miles (81.8%) and drones handling 42.97 miles (18.2%) of the total 

workload.  

 

 

Figure 5.8 Comparison of Distances Traveled by Cars and Drones Across Six Scenarios, 
Highlighting the Impact of Drone Integration and Weather-Aware Routing. 

 

The integration of drones demonstrates a clear reduction in car dependency, effectively 

distributing the delivery workload while maintaining operational safety through weather 

considerations. In Scenario 4, the system remains similar to Scenario 3 but excludes weather-

aware routing. Here, the car travels a slightly higher distance of 213.24 miles (87.1%), with 

drones covering a reduced distance of 31.45 miles (12.9%). The reduction in drone usage 

highlights the impact of weather-related constraints on routing efficiency. Without weather-

aware routing, drones operate less effectively, resulting in increased reliance on cars. Scenario 5 
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increases the number of drones to six (two per Voronoi region) with weather-aware routing. The 

car travels 152.0 miles (64.2%), while drones handle 66.23 miles (28.0%). This configuration 

demonstrates the scalability of the multi-modal system, with drones taking on a significantly 

larger share of the workload compared to Scenarios 3 and 4, further reducing car dependency. In 

Scenario 6, the six-drone configuration is maintained, but weather-aware routing is removed. 

The car again travels 152.0 miles (62.1%), while drones cover 64.22 miles (26.2%). Similar to 

Scenario 4, the absence of weather-awareness slightly increases the workload on cars compared 

to drones, suggesting that weather considerations enhance the efficiency and safety of drone 

operations.  

The comparison between the baseline case in the Shield study, where decentralized 

delivery resulted in a total distance of 1,873 miles, and the optimized scenarios highlights the 

significant impact of centralized optimization and drone integration in reducing total distance 

traveled. In Scenario 1, the total distance is reduced by 87.2% compared to the baseline. This 

dramatic improvement demonstrates the value of optimization and shared vehicle usage, 

eliminating redundant travel associated with decentralized operations. Scenario 3, which 

integrates a single drone per region alongside a car, achieves an additional 1% reduction in total 

distance compared to Scenario 1. This improvement reflects the effectiveness of drones in 

handling local deliveries, reducing the burden on cars. Scenario 5, which increases drone 

capacity to two per region with weather-aware routing, achieves a further 7.8% reduction in total 

distance compared to Scenario 1. This scenario demonstrates the combined benefits of 

optimization, increased drone capacity, and weather-aware routing, which distribute the delivery 

workload more efficiently and minimize redundant vehicle movement. Key observations are as 

follows: 
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• Drone Integration Reduces Car Dependency: Scenarios 3–6, which incorporate 

drones, demonstrate significant reductions in car travel compared to Scenarios 1 and 2, 

highlighting the benefits of multi-modal systems in optimizing delivery operations. 

• Weather-Aware Routing Improves Efficiency: Scenarios with weather-aware routing 

(3 and 5) show better workload distribution and higher drone utilization compared to 

their non-weather-aware counterparts (4 and 6). This indicates that considering weather 

conditions enhances drone efficiency and overall system safety. 

• Scalability of Multi-Modal Systems: Increasing the number of drones (Scenarios 5 and 

6) further shifts the workload from cars to drones, showcasing the potential for scalability 

in drone-enabled systems. 

Emissions. The emission performance measure is directly proportional to the distance 

traveled, calculated using coefficients derived from Rodrigues et al. (2022). This source was 

selected as its data closely aligns with the specifications of the vehicles and drones used in this 

case study. Specifically, we applied emission factors of 546.85 g/mile for cars and 23.17 g/mile 

for drones. These factors reflect the significantly lower environmental impact of drones 

compared to cars, emphasizing the potential of drone integration to reduce emissions in multi-

modal delivery systems.  
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Figure 5.9 CO2 Emissions Across Different Scenarios Based on Travel Distances for Cars and 
Drones 

 

Figure 5.9 illustrates the CO2 emissions across six scenarios, highlighting the impact of 

different configurations on environmental performance. Scenarios 1 and 2, which rely entirely on 

cars for deliveries, exhibit the highest emissions at 130,609 g and 129,494 g, respectively. 

Introducing drones in Scenario 3 results in a reduction of approximately 18% compared to 

Scenario 1. This demonstrates the environmental benefits of integrating drones into the delivery 

system. Scenario 4 shows slightly higher emissions at 117,338 g, representing a 10% reduction 

compared to Scenario 1. However, it is less efficient than Scenario 3 due to the absence of 

weather-aware routing, which results in increased reliance on cars. Scenarios 5 and 6, with a 

larger fleet of drones and optimized configurations, achieve the lowest emissions at 84,655 g and 

84,609 g, respectively. These represent a 35% reduction compared to Scenario 1, highlighting 



 

66 

 

the significant environmental advantages of drone-enabled systems, particularly when paired 

with efficient routing strategies. The consistent results between Scenarios 5 and 6 also suggest 

that weather-aware routing has minimal additional impact when the system is already optimized 

with sufficient drone resources. 

Delivery Times. Figure 5.10 provides a detailed view of the distribution of delivery 

times and weight delivered to the final destination under six different scenarios, highlighting the 

contributions of cars and drones to the overall performance of the delivery system. All orders are 

ready for pickup at 8:00 AM, with a strict deadline of 3:00 PM for delivery. 

In Scenario 1, a single car handles the entire weight of 40.1 lbs, completing the delivery 

at 2:41 PM. This results in a late delivery, emphasizing the limitations of relying solely on one 

vehicle. The average delivery time under this scenario is 6.68 hours, the longest among all 

scenarios, demonstrating inefficiency in both timing and workload management. 

Scenario 2 introduces a second car, allowing for a division of deliveries. The first car 

delivers 11 lbs (27.4% of the total weight) at 8:43 AM, significantly earlier than the single-car 

system in Scenario 1. The remaining 29.1 lbs (72.6%) are delivered by the second car at 1:54 

PM, just before the deadline. This reduces the average delivery time to 4.48 hours, showcasing 

the efficiency gains achieved through workload sharing. 
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

 
(e) Scenario 5 

 
(f) Scenario 6 

Figure 5.10 Distribution of Delivery Times for Orders Across Scenarios 1 to 6, Showing the 
Proportion of Weight Delivered by Cars and Drones to the Final Destination. 
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In Scenario 3, a drone per region is introduced alongside a single car. The drones deliver 

7.6 lbs (19%) of the total weight at 8:54 AM, ensuring an early delivery, while the car handles 

the remaining 32.5 lbs (81%), completing the task at 1:42 PM. The average delivery time under 

this configuration increases slightly to 4.78 hours compared to Scenario 2, likely due to the 

drone's limited capacity and the car's continued reliance for the majority of the workload. 

However, observations highlight that while integrating weather-aware and non-weather-aware 

approaches does not affect the assignment of orders to vehicles for the final destination, it 

significantly impacts operational timings, such as recharge and transshipment. In Scenario 3, the 

inclusion of weather conditions led to the activation of an additional drone during favorable 

weather conditions, enabling faster final delivery times compared to the non-weather-aware 

Scenario 4, where the average delivery time increases to 5.02 hours. 

In Scenario 4, the drone still delivers 7.6 lbs (19%) of the total weight at 8:54 AM, but 

the car completes its delivery slightly later at 1:59 PM. The absence of weather-aware routing 

results in inefficiencies such as fixed range settings and longer operational times. This 

underscores the trade-offs associated with accounting for weather conditions in delivery 

networks, balancing reliability with potential increases in operational time. While weather-aware 

routing may introduce additional operational requirements like recharging, it ensures safer and 

more reliable operations, particularly in complex delivery systems. 

Scenarios 5 and 6 introduce two drones, significantly improving workload distribution. In 

Scenario 5, the first drone delivers 3.4 lbs (8.4%) at 8:06 AM, the second drone delivers 5.7 lbs 

(14.2%) at 8:55 AM, and the car completes the delivery of the remaining 31 lbs (77.4%) at 12:26 

PM. This configuration achieves an average delivery time of 4.25 hours, the lowest among all 

scenarios. Similarly, in Scenario 6, the delivery pattern remains nearly identical, with the car 
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completing its delivery slightly earlier at 12:19 PM, maintaining an average delivery time of 4.25 

hours. These scenarios demonstrate how increasing drone capacity in multi-modal delivery 

systems ensures earlier deliveries and reduces dependency on cars. 

Another insight from these figures is their utility in aiding decision-makers to plan 

deliveries based on the operational capacity of the destination. For example, aligning delivery 

schedules with the receiving facility’s capacity ensures optimized delivery efficiency and 

resource utilization. Scenarios 5 and 6 achieve the best overall results, with the shortest average 

delivery times and the earliest completion of deliveries, demonstrating the effectiveness of multi-

modal systems with optimized drone integration. 

Across all scenarios, the analysis underscores the importance of workload distribution, 

weather-aware routing, and leveraging drone technology to improve delivery efficiency while 

maintaining safe and reliable operations. The findings highlight how integrating weather-aware 

modeling can enhance the responsiveness and efficiency of delivery systems, offering critical 

insights for planning and decision-making in complex delivery networks. 

Comparing these optimized scenarios to the baseline scenario discussed in Chapter 4 and 

illustrated in Figure 4.5, the improvements become even more apparent. In the baseline 

decentralized delivery system, most deliveries were completed after 3 PM, with some even 

extending to the next day, resulting in delays and inefficiencies. In contrast, the optimized 

scenarios ensure that all deliveries are completed by the 3 PM deadline, demonstrating the 

transformative potential of centralized planning, shared resources, drone integration, and 

advanced optimization techniques. 

Computational Times. Figure 5.11 illustrates the computational runtimes for Scenarios 

1 through 6 on a logarithmic scale, highlighting the computational effort required for each 
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configuration. The runtimes vary significantly across the scenarios due to differences in the 

complexity of the models and the computational demands associated with the configurations. 

Scenario 1 exhibits the lowest runtime of 30.3 seconds, as it involves a single car with no 

optimization required for multi-modal coordination or additional vehicles. This minimal 

configuration results in low computational overhead. Similarly, Scenario 2 has a runtime of 

303.3 seconds, which is higher than Scenario 1 but still relatively low. The increase is attributed 

to the inclusion of a second car, requiring the solver to handle a slightly more complex routing 

problem. 

The introduction of drones in Scenario 3 significantly increases the computational effort, 

resulting in a runtime of 11,975 seconds. This is due to the added complexity of coordinating 

drone operations alongside the car, particularly with weather-aware routing considerations. 

Scenario 4 further increases the runtime to 19,076 seconds, reflecting the additional 

computational burden introduced by the absence of weather-aware optimizations. 
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Figure 5.11 Log-Scaled Runtime (Seconds) for Scenarios 1 to 6, Highlighting Computational 
Effort Across Different Configurations. 

 

In contrast, Scenarios 5 and 6 achieve a notable reduction in runtime, with 5,287.5 

seconds and 5,230 seconds, respectively. These scenarios benefit from the scalability and 

efficiency of multi-modal configurations that include two drones. The reduction in runtime 

compared to Scenarios 3 and 4 suggests that increasing drone capacity and optimizing their 

integration can streamline the computational process by effectively reducing the workload on 

cars and narrowing the solution space. 

5.3 Modeling Limitations and Computational Challenges 

Despite the advantages of our model, we identified some limitations during various runs, 

as discussed for Scenarios 5 and 6 in Sections 5.2.3 and 5.2.4. This section elaborates on these 

limitations with an additional illustrative example to clarify the challenges further.  
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To validate our model, we ran numerous instances across all scenarios. One notable 

limitation emerged during an instance involving the optimal configuration of one car for the 

entire region, one drone in VR 1, two drones in VR 2, and one drone in VR 3. In this instance, 

we assumed an extended delivery deadline of 8 PM (compared to the 3 PM deadline in previous 

scenarios). Upon analyzing this instance, we observed that drones exhibited a tendency to wait at 

specific nodes until the flight time coincided with favorable energy consumption conditions. The 

model, leveraging a prediction function for weather-related energy consumption as a function of 

arrival time, encouraged delaying deliveries to align with weather conditions that minimized 

energy usage. This behavior was observed due to the absence of explicit constraints on allowable 

waiting times in the model.  

As illustrated in Figure 5.12, a drone arrived at a designated node (highlighted in light 

blue) at 9:04 AM but remained idle until 4:28 PM to benefit from energy-efficient weather 

conditions. While this node served as the final destination for the orders, it was not the drone's 

final depot. Subsequently, the drone departed the node at 4:28 PM, picking up new orders on its 

way to its final depot. 

This behavior also impacted the associated car operations. The car, scheduled to transship 

orders from the drone at the drone's final depot (shown in light orange in Figure 5.12), arrived at 

12:16 PM and remained idle until 4:36 PM to complete the transshipment. The car then resumed 

its route, completing the delivery at 4:46 PM. While this solution minimized overall 

transportation costs due to the drones' energy-efficient operation, it significantly increased total 

delivery time. Specifically, the average delivery time increased by 9.4 hours, raising concerns 

about timeliness for time-sensitive operations. 
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Figure 5.12 Illustration of Drone and Car Waiting Behavior in an Optimal Routing. 

 

The light blue node marks the delivery point where the drone arrived at 9:04 AM but 

remained idle until 4:28 PM to align with energy-efficient weather conditions. The light orange 

node represents the car's transshipment location, where it arrived at 12:16 PM and waited until 

4:36 PM to receive orders from the drone. These delays minimized transportation costs but 

significantly increased the total delivery time. 

This example underscores a trade-off inherent in the model: while it effectively 

minimizes transportation costs, it may inadvertently compromise delivery timeliness. The delay 

in delivery stems from the model's prioritization of cost efficiency, particularly in leveraging 

drones' lower transportation costs and the weather-aware prediction function. However, the 

absence of explicit constraints on waiting times or penalties for excessive delays introduces the 

risk of impractical solutions for operations requiring strict adherence to delivery schedules. 

To address this possible limitation, future iterations of the model should consider: 
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1. Imposing Constraints on Waiting Times: Explicitly limit the allowable waiting time 

for drones and vehicles at nodes to prevent prolonged idling. 

2. Penalizing Waiting Time in the Objective Function: Introduce a penalty for the 

difference between arrival and departure times at a node, encouraging solutions that 

balance cost efficiency with timeliness. 

3. Refining the Prediction Function: Ensure the energy consumption prediction function is 

robust and reliable, minimizing the risk of inaccuracies that could exacerbate delays. 

4. Dynamic Re-Optimization: Incorporate mechanisms to dynamically adjust routes and 

schedules based on updated weather forecasts, ensuring operational feasibility without 

excessive delays. 

This analysis highlights the need for enhanced modeling strategies to balance cost 

efficiency with practical constraints on delivery timeliness, particularly in real-world 

applications where time-sensitive operations are critical. 

The second issue encountered during our experiments across several instances involved 

the potential infeasibility of cases where the final depot for none of the vehicles coincided with 

the lab. This occurred because the model requires that each vehicle visit each node only once, a 

constraint designed to prevent the formation of tours. While this constraint ensures all orders are 

eventually delivered, it imposes a rigid requirement that one vehicle's final destination must 

serve as the unloading point for all orders. 

This approach, while effective in guaranteeing delivery, inadvertently restricts flexibility 

in the assignment of final destinations for vehicles. The enforced rigidity may not align with the 

most efficient routing or scheduling strategies, leading to suboptimal solutions. For instance, if 

the optimal routing configuration would benefit from unloading orders at an intermediate node 
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instead of a designated final depot, the model is unable to accommodate this adjustment. 

Consequently, operational costs or total delivery times may increase due to these unnecessary 

constraints. 

To address this limitation, future iterations of the model could introduce additional 

decision variables that allow the final depot locations of vehicles to be optimized dynamically, 

rather than being predetermined and fixed in advance. This improvement would enable the 

model to explore a broader range of routing and scheduling options, potentially reducing costs 

and improving operational efficiency. By allowing the model to determine the most suitable 

unloading points as part of the optimization process, it would better adapt to varying operational 

scenarios and requirements. 
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Chapter 6 Chapter 6 Managerial Insights and Conclusion 

In this chapter, we summarize the key findings from our analysis and present managerial 

insights derived from the optimization models and numerical results discussed in earlier 

chapters. The focus is on understanding the implications of these findings for improving 

healthcare logistics in rural settings and identifying actionable strategies for decision-makers. We 

also discuss the broader value of integrating advanced modeling techniques, such as weather-

aware systems, into operational decision-making. Finally, we conclude with recommendations 

for future research and practical applications. 

The study demonstrated that optimizing delivery networks through centralized planning, 

incorporating drones alongside ground vehicles, and considering dynamic environmental factors 

significantly improves the efficiency, reliability, and cost-effectiveness of rural healthcare supply 

chains. This research focused on delivering test kits from decentralized pick-up locations to a 

centralized lab, showcasing the potential for such frameworks to address similar logistical 

challenges in other critical contexts, such as vaccine distribution or medication delivery. 

One of the most striking findings was the stark contrast between the baseline 

decentralized delivery approach, where each location operated independently, and the optimized 

centralized system proposed in this study. Under the baseline scenario, decentralized delivery 

resulted in excessive transportation distances, higher operational costs, and longer delivery times. 

By contrast, the optimized scenarios reduced transportation distances by over 88% and 

demonstrated significant cost savings—by about 99% in scenarios leveraging drone integration 

and shared vehicle resources. These findings highlight the inefficiencies inherent in 

uncoordinated delivery systems that are limited to ground vehicles and underscore the 

transformative potential of optimization in resource-constrained environments. 
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The integration of drones as part of a multi-modal delivery network emerged as a pivotal 

innovation. In scenarios incorporating drones, the workload distribution across transportation 

modes allowed for more flexible and efficient operations. Drones effectively reduced reliance on 

cars for short-distance deliveries, particularly in regions with rugged terrain or limited road 

infrastructure. Furthermore, drones facilitated earlier deliveries, ensuring time-sensitive test kits 

reached their destination promptly. Despite the upfront costs associated with drone deployment, 

the long-term benefits in terms of cost efficiency and operational reliability are clear. 

Another critical insight derived from the experiments was the role of weather-aware 

modeling in enhancing the safety and reliability of drone operations. By incorporating weather 

data into the optimization framework, the model ensured that drones operated under favorable 

conditions, reducing the risk of delays and energy inefficiencies. Although weather-aware 

systems incurred slightly higher costs compared to non-weather-aware models, the additional 

expenditure is justified by the enhanced safety and predictability of delivery schedules. 

Moreover, the ability to account for weather conditions in planning provides a robust foundation 

for adapting to real-world uncertainties. 

The study also highlighted some practical challenges and limitations of the proposed 

models, particularly in scenarios where operational flexibility was constrained by the rigid 

assignment of final delivery depots. Instances of excessive waiting times due to energy 

optimization based on predicted weather conditions further emphasized the need to refine the 

model to include constraints on allowable waiting times and introduce penalties for prolonged 

idle periods. Addressing these limitations will be crucial for ensuring the applicability of the 

model to time-sensitive healthcare operations. 
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From a managerial perspective, the findings suggest that decision-makers in rural 

healthcare logistics should prioritize the adoption of integrated, weather-aware multi-modal 

networks to optimize delivery operations. Investments in drone technology, combined with 

robust optimization frameworks, can dramatically enhance the accessibility and equity of 

healthcare services. Moreover, the insights gained from this study extend beyond healthcare and 

can inform the design of efficient logistics systems in other critical sectors, such as disaster 

response or agricultural supply chains. 

6.1 Matching Projects to This Study 

This project aligns closely with the broader research efforts undertaken by the PI, as 

demonstrated by several complementary studies. Three research papers—one conference 

proceeding and two peer-reviewed journal articles—have been co-authored by the PI on topics 

related to this project, each contributing unique insights to the challenges of healthcare logistics 

and supply chain optimization. 

The first paper, presented at the HICSS 2024 conference, focused on optimizing strategic 

vaccine distribution using drones, specifically small drones for local vaccine delivery. Initial 

findings from this study, based on data from Vanuatu, demonstrated the potential of drones to 

replace traditional transportation methods and improve health worker outreach efficiency. This 

research has set a framework for coordinated efforts between drones and health workers, 

addressing vaccine outreach challenges in underserved regions. 

Additionally, the PI published a peer-reviewed article in the journal Socio-Economic 

Planning Sciences, examining the equity implications of COVID-19 interventions across the 

United States. This study highlights the importance of tailored, data-driven interventions to 

mitigate disparities among subgroups and locations during public health crises. The findings 
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complement the current project by emphasizing the need for equitable strategies in healthcare 

delivery, especially during sudden disruptions. 

A third paper, published in Computers & Operations Research, proposed an optimization 

model to enhance pandemic-related supply chain resilience. The study focused on a novel 

supplier selection strategy that balances centralized decision-making with localized preferences, 

addressing the risks of supply chain disruptions. This work provides valuable insights into 

strategic supplier relationships, which are crucial for maintaining operational continuity during 

crises—a perspective that aligns with the current project’s focus on ensuring reliable and 

efficient healthcare logistics. 

Building on these related works, the findings from this study will culminate in a research 

paper currently under preparation for submission to a peer-reviewed journal. This forthcoming 

publication will contribute to the growing body of knowledge on transportation systems and 

healthcare supply chain optimization, emphasizing the integration of drones and advanced 

modeling techniques to improve rural healthcare logistics. By demonstrating how transportation 

systems can be reimagined to enhance delivery efficiency, equity, and reliability, particularly in 

resource-constrained and disruption-prone settings, this research underscores the critical role of 

innovative approaches in addressing logistical and public health challenges. As the final piece of 

this research, the anticipated publication aims to bridge gaps in current transportation system 

design, offering actionable insights that align with broader efforts to improve access and 

outcomes in rural and underserved communities. 

6.2 Future Directions for Research 

Building on the findings of this study, several avenues for future research can be explored 

to enhance the optimization framework and address its current limitations. These directions aim 
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to improve the robustness, scalability, and real-world applicability of the proposed model in 

healthcare logistics and beyond. 

Incorporating Uncertainty. One critical area for future research is the integration of 

uncertainty into the optimization framework. Real-world delivery networks are subject to various 

sources of uncertainty, including weather fluctuations, vehicle breakdowns, demand variability, 

and unforeseen disruptions. Extending the model to incorporate stochastic or robust optimization 

techniques would enable decision-makers to account for these uncertainties, ensuring that 

solutions remain effective and reliable under a range of scenarios. For example, probabilistic 

models for drone energy consumption and delivery times could better capture the variability 

introduced by weather conditions and operational constraints. 

Optimizing Final Depot Locations. Another promising direction involves optimizing 

the final depot locations for vehicles and drones, rather than assuming these locations are fixed 

and predetermined. Allowing the model to dynamically determine the most suitable depot 

locations based on operational requirements and geographic constraints could further enhance 

delivery efficiency and reduce costs. This flexibility would enable the system to adapt to 

evolving logistics demands and infrastructure limitations, making it more resilient and scalable. 

Expanding Multi-Modal Integration. Future research could explore deeper integration 

of additional transportation modes, such as electric vehicles, bicycles, or even autonomous 

ground vehicles, alongside drones and conventional vehicles. These modes could be particularly 

valuable in regions with varying levels of infrastructure and accessibility. By considering a wider 

range of transportation options, the model could provide more adaptable and cost-effective 

solutions tailored to specific regional needs. 
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Real-Time Dynamic Optimization. Developing real-time dynamic optimization 

capabilities is another key area for exploration. By incorporating real-time data streams, such as 

updated weather forecasts, traffic conditions, or sudden changes in demand, the model could 

adapt delivery routes and schedules dynamically. This would improve its responsiveness and 

effectiveness in real-world applications, particularly in emergency response scenarios where 

conditions can change rapidly. 

Equity Considerations in Logistics Design. Building on the equity-focused aspects of 

this study, future research could further investigate how to design delivery systems that prioritize 

equitable access to healthcare and resources. This could include incorporating measures of 

socioeconomic and geographic disparities directly into the optimization framework, ensuring that 

underserved populations are not disadvantaged by logistical constraints. 

Broader Applications Beyond Healthcare. While this study focuses on rural healthcare 

logistics, the proposed framework can be adapted to other critical sectors, such as disaster relief, 

agriculture, and education. Future research could explore the customization of the model for 

these domains, addressing unique logistical challenges while leveraging the core principles of 

multi-modal integration, centralized planning, and predictive modeling. 

By pursuing these future directions, the optimization framework can be refined and 

expanded to meet the growing demands of modern logistics systems, ensuring their relevance 

and utility in diverse and dynamic operational environments. These advancements should include 

designing solution algorithms and developing tailored methods to handle computational 

tractability, enabling the framework to efficiently address large-scale, real-world problems. Such 

improvements would not only enhance rural healthcare delivery but also contribute to the 

development of more equitable, efficient, and resilient transportation networks.  
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