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 Abstract 

This report describes work examining the element of timing within risk mitigation 

decisions with the goal of building decision support tools to better manage transportation and 

supply chain risks. This research then develops analytical frameworks to derive insight to two 

overarching research questions involving how the timing of information affects mitigation 

decisions and how these scenarios can be modeled. The frameworks examine a two-action 

decision scenario and a multiple action decision. Within the two-action decisions, we find that 

the scenarios most sensitive to issues of timing are those in which the cost of the risk is low 

relative to the mitigation costs. We find differences between the two-action and multiple-action 

decision that underscore the importance of understanding the parameters of the decision 

situation. Finally, the results underscore the important role played by specifications to represent 

the decision maker’s belief about factors affecting the decision-making context.  
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Chapter 1 Introduction 

The COVID-19 pandemic resulted in significant supply chain disruptions across many 

industries. Increased demand caused shortages of medications (Bookwalter 2021) and personal 

protective equipment (PPE) (Mahmood et al. 2020) in the healthcare industry. Reduced supply 

due to labor shortages at meat-packing plants caused shortages of agricultural products such as 

chicken (Luckstead and Devadoss 2020). These supply disruptions negatively impacted the 

economic strength of the U.S. and also disproportionately affected vulnerable populations. 

Further complicating matters, the severity of these disruptions varied over time, creating a 

dynamic element to risk prediction and mitigation. These challenges lead to difficulty in 

managing transportation and supply networks, motivating the current research to investigate the 

issue of time-varying risks posing challenges to the management of transportation and supply 

chain networks. 

The examination of these time-varying risks focuses on two overarching research 

questions: 

(1) How can the timing of information, which may be of varying quality/accuracy at different 

points in time, affect the value to a decision maker and be represented analytically within 

the context of risk management decisions?   

(2) What are the tradeoffs between the quality/accuracy of a prediction and the lead time of 

that prediction within the context of risk management decisions for transportation and 

supply chain networks?  

By better understanding how data-driven models perform within a dynamic risk 

landscape and how this performance relates to risk mitigation and operational decisions, the 

results of this research will alleviate the negative consequences posed by both large systemic 
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shocks such as a worldwide pandemic as well as those posed by smaller shocks. Improved 

management of transportation and supply chain networks in the face of disruptions can improve 

the safety of the users and beneficiaries of those systems.   

The remainder of this report presents a literature review and categorization of supply 

chain risks in Chapter 2, as well as a mapping of risk mitigation strategies to risk events and the 

approximate time horizon of each in Chapter 3. Chapters 4 and 5 develop technical models for 

the analysis of the two research questions in the case of a single-period risk event in which the 

available risk mitigation actions comprise either a two-action or a multiple action decision.  

These chapters also present the results of a sensitivity analysis to parameters specified to 

represent a range of scenarios. Chapter 6 synthesizes the results and how they support the 

development of dynamic decision support for risk mitigation, in addition to discussing important 

additional research questions that must be addressed to realize a commercially viable decision 

support system. 
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Chapter 2 Review of Supply Chain Risks  

Supply chain networks are complex and include networks of diverse participants, 

encompassing lower-tier suppliers to end customers, established with fundamental objectives to 

minimize costs, maximize value, and explore new markets through effectively managed 

relationships among members (Hallikas et al., 2002; Trkman and McCormack, 2009; Tuncel and 

Alpan, 2010). While networking serves to leverage collaboration and partnership among various 

supply chain players, it simultaneously acts as both a source and a medium through which risks 

are generated and propagated throughout the entire network. 

The issues related to supply risks are associated with the design of the supply system, 

including the number of suppliers (single/multiple sourcing), the location of suppliers 

(local/global sourcing), and the agility, flexibility, delivery reliability, and infrastructural strength 

of suppliers, as well as coordination and information sharing. These aspects are covered in our 

classification and illustrated visually in Figure 2.1.  

 

 

Figure 2.1 A categorization of supply chain risks 
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Literature contains suggestions for managing demand-side risks including coordination 

and information sharing among wholesalers, dealers, and retailers, along with shorter planning 

horizons (Gupta and Maranas, 2003; Chen and Lee, 2004; Boute et al., 2007). Additionally, there 

are proposals to examine information-sharing levels from a security perspective and adopt trust-

based mechanisms under volatile market conditions (Xiao et al., 2007). 

2.1 Demand Risk 

Various researchers investigated the impact of demand volatility on inventory 

management, providing insights on safety stock reduction (Cachon 2004; Talluri, Cetin, and 

Gardner 2004; Betts and Johnston 2005; Sodhi 2005; Xiao and Yang 2008; Radke and Tseng 

2012). Ballou and Burnetas (2003) compared traditional inventory planning with cross-filling, a 

method involving customer demand fulfillment from multiple stocking locations, revealing that 

cross-filling can reduce safety stocks. Talluri, Cetin, and Gardner (2004) introduced a safety 

stock model, demonstrating its cost-saving effectiveness in managing make-to-stock inventories 

based on a case study at a pharmaceutical company. Betts and Johnston (2005) presented a multi-

item constrained inventory model, determining that just-in-time (JIT) replenishment is more 

effective than component substitution due to lower safety stock investment. 

Additionally, scholars explore the impact of demand visibility and the bullwhip effect on 

supply chain performance. Smaros et al. (2003) employed a discrete-event simulation model, 

indicating that partial improvement in demand visibility enhances production and inventory 

control efficiency. Reiner and Fichtinger (2009) developed a dynamic model evaluating supply 

chain process improvements, noting that reducing order variability decreases the bullwhip effect 

and average on-hand inventory but comes with a decrease in service level. Sucky (2009) 
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suggested order variability increases up the supply chain, emphasizing the overestimation of the 

bullwhip effect in simple supply chain assumptions with risk pooling effects. 

A common limitation across these studies is the lack of implementation in real industrial 

cases (Ballou and Burnetas 2003; Smaros et al. 2003; Cachon 2004; Betts and Johnston 2005; 

Sodhi 2005; Xiao and Yang 2008; Reiner and Fichtinger 2009; Sucky 2009; Radke and Tseng 

2012). The absence of actual implementation and verification raises doubts among potential users 

regarding the effectiveness and efficiency of the proposed methods. Moreover, several studies 

simplify problems by using stylized supply chains (Ballou and Burnetas 2003; Smaros et al. 

2003; Cachon 2004). 

2.2 Supply  Disruption 

  Supply risk assessment is currently a central focus in research, particularly concerning 

supplier evaluation and selection. Numerous articles explore various supply risks, including 

factors such as poor quality (Talluri, Narasimhan, and Nair 2006), late delivery (Talluri, 

Narasimhan, and Nair 2006), uncertain capacity (Kumar, Vrat, and Shankar 2006; Viswanadham 

and Samvedi 2013), supplier failure (Kull and Talluri 2008; Ravindran et al. 2010; Ruiz-Torres, 

Mahmoodi, and Zeng 2013), supplier's financial stress (Lockamy and McCormack 2010), supply 

disruption (Olson and Wu 2010; Meena, Sarmah, and Sarkar 2011), poor supplier service (Wu et 

al. 2010; Chen and Wu 2013), suppliers' risk management ability and experience (Ho, Dey, and 

Lockström 2011), and lack of supplier involvement (Chaudhuri, Mohanty, and Singh 2013). 

Quantitative methods proposed to address these challenges include mathematical 

programming, data envelopment analysis (DEA) approaches (Kumar, Vrat, and Shankar 2006; 

Talluri, Narasimhan, and Nair 2006; Ravindran et al. 2010; Olson and  Wu 2010; Wu et al. 2010; 

Meena, Sarmah, and Sarkar 2011), multicriteria decision-making, and AHP approaches 
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(Blackhurst, Scheibe, and Johnson 2008; Kull and Talluri 2008; Ho, Dey, and Lockström 2011; 

Chen and Wu 2013; Viswanadham and Samvedi 2013), Bayesian networks (Lockamy and 

McCormack 2010), decision tree approach (Ruiz-Torres, Mahmoodi, and Zeng 2013), and fuzzy-

based failure mode and effect analysis (FMEA) with an ordered weighted averaging approach 

(Chaudhuri, Mohanty, and Singh 2013). 

Other supply risks have been examined including second-tier supply failure (Kull and 

Closs 2008), offshore sourcing risk (Schoenherr, Tummala, and Harrison 2008), unreliable dual 

sourcing network (Iakovou, Vlachos, and Xanthopoulos 2010), supplier non-conformance risk 

(Wiengarten, Pagell, and Fynes 2013), supplier incapability (Johnson, Elliott, and Drake 2013), 

and supplier unreliability (Cheong and Song 2013). 

In contrast to approaches focused on assessing supply risks, some articles developed 

supply risk assessment methods and models. Zsidisin et al. (2004) examined tools and techniques 

within an agency theory, emphasizing addressing supplier quality issues, improving supplier 

processes, and reducing the likelihood of supply disruptions. Ellegaard (2008) analyzed supply 

risk management practices using a case-based methodology, revealing predominantly defensive 

practices among small company owners. Wu and Olson (2008) compared three risk evaluation 

models, while Azadeh and Alem (2010) benchmarked supplier selection models under various 

conditions. 

Although supplier evaluation and selection dominate research attention, many studies in 

this category rely on conceptual model development and demonstration with simulated data, 

lacking real-world testing. Additionally, some articles exhibit technical limitations, such as the 

use of a single input measure in DEA analyses (Talluri, Narasimhan, and Nair 2006), 

assumptions about unchanged supplier capabilities (Kull and Talluri 2008), and reliance on 
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assumptions of deterministic input parameters and supplier characteristics (Ruiz-Torres, 

Mahmoodi, and Zeng 2013). Addressing these limitations and incorporating real data testing 

could enhance the practical applicability of these methods. 

2.3 Transportation Risk 

We identified only a few studies that relate to transportation risk mitigation. 

Hishamuddin, Sarker, and Essam (2013) formulated an integer nonlinear programming model to 

determine the optimal production and ordering quantities for the supplier and retailer, as well as 

the duration for recovery subject to transportation disruption, which yields the minimum relevant 

costs of the system. Their results showed that the optimal recovery schedule highly depends on 

the relationship between the backorder cost and the lost sales cost parameters. They studied a 

simple two-tier supply chain with one supplier and one retailer and assumed the demand to be 

deterministic. 

2.4 Quality Risk 

The subsequent publications addressed the mitigation of diverse manufacturing risk 

factors, encompassing quality risk (Kaya and Özer 2009; Sun, Matsui, and Yin 2012), lead time 

uncertainty (Li 2007), random yield risk (He and Zhang 2008), non-conforming product design 

(Khan, Christopher, and Burnes 2008), and machine failures (Kenné, Dejax, and Gharbi 2012). 

The methodologies employed included a longitudinal case study (Khan, Christopher, and Burnes 

2008), a newsvendor model (Li 2007), a linear programming model (Kaya and Özer 2009), a 

stochastic dynamic model (Kenné, Dejax, and Gharbi 2012), P-chart solution model (Sun, 

Matsui, and Yin 2012), and unconstrained and constrained mathematical programming models 

(He and Zhang 2008). Certain limitations were associated with some of these articles. 

Specifically, Li (2007) and Kenné, Dejax, and Gharbi (2012) focused solely on one type of 
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product in their models, while He and Zhang (2008) and Sun, Matsui, and Yin (2012) considered 

only one supplier and one retailer in their analyses. Additionally, Kaya and Özer (2009) assumed 

the demand function to be linear. 

2.5 Price Fluctuation Risk 

Hofmann (2011) explored the notion of natural hedging within supply chains and reveals 

that mitigating currency and commodity price fluctuations can decrease vulnerability in the 

supply chain. Raghavan and Mishra (2011) created a nonlinear programming model 

demonstrating that a joint decision on the loan amount when one firm in the supply chain has 

significantly low cash benefits both the lender and borrowing firms more than an independent 

decision. Lundin (2012) employed network flow modeling to address financial risks in cash 

supply chains, discovering that centralizing from two to one central bank storage facilities 

unintentionally results in increased transportation costs and financial risk. However, there were 

limitations in these studies. Hofmann (2011) relied on a brief literature review and a conceptual 

research design. Raghavan and Mishra (2011) focused on a simple two-tier supply chain with a 

single manufacturer and retailer. Lundin (2012) considered only transportation and cash 

opportunity costs while overlooking production and warehousing costs. 

2.6 Information Risk 

Du, Lee, and Chen (2003) proposed that companies should create attribute 

correspondence matrices for databases to facilitate data sharing with both upstream and 

downstream supply chain partners, while preventing the leakage of information to competitors. 

Their focus is solely on the vertical relationships among companies, with no consideration for the 

horizontal relationships with new partners. In contrast, Le et al. (2013) investigated the risk 

introduced to enterprises in retail supply chain collaboration through data sharing. They put 
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forward an association rule-hiding algorithm designed to eliminate sensitive knowledge from the 

released database and minimize data distortion. 

2.7 Supply Chain Risk Management 

SCRM can be divided into two broad categories of approaches. The first is the strategy for 

comprehensive risk management approach (Jabbarzadeh et al. 2012; Christopher and Peck 2004; 

Craighead et al. 2007; de Matta 2016), and the second is a focused approach to a specific 

disruption. These specific disruptions could be security (Véronneau and Roy 2014), lead times 

(Kouvelis and Li 2008), or terrorism (Sheffi 2001). Although these methods provided enormous 

value and insights, the events causing disruption were presumed to be unintentional. The lack of 

risk managing strategies to understand the cause of disruption leaves a gap from a theoretical 

perspective, exposing firms to unavoidable risks in the environment. 

2.8 Synthesis 

This literature review synthesizes insights from various researchers on supply chain risk 

types, providing a comprehensive overview of the multifaceted challenges faced by modern 

supply chains. Researchers such as Harland, Brenchley, and Walker (2003) identified risks at 

strategic, operational, customer, financial, and legal levels, establishing a foundational 

understanding. Jüttner, Peck, and Christopher (2003) focus on environmental, network-related, 

and organizational risks, while Cavinato (2004) expands the perspective to include physical, 

financial, informational, relational, and innovational risks. 

Chopra and Sodhi (2004) delve into specific operational risks, emphasizing disruptions, 

delays, systems, and intellectual property concerns. Tang (2006a) broadens the scope to include 

operational and disruption risks associated with uncertain customer demand and unforeseen 

events like natural disasters. Wu, Blackhurst, and Chidambaram (2006) distinguish between 
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internal and external risks, providing a nuanced perspective on controllable and uncontrollable 

factors. 

The comprehensive categorizations continued with Bogataj and Bogataj (2007), 

Blackhurst, Scheibe, and Johnson (2008), and Manuj and Mentzer (2008), covering supply, 

process, demand, organizational, and environmental risks. Tang and Tomlin (2008) extend the 

analysis to include intellectual property, behavioral, and political/social risks. Wagner and Bode 

(2008) introduced a framework incorporating demand side, supply side, regulatory, legal, 

infrastructure, and catastrophic risks. 

The subsequent classifications by Trkman and McCormack (2009), Kumar, Tiwari, and 

Babiceanu (2010), Olson and Wu (2010), and Ravindran et al. (2010) provided insights into 

endogenous, exogenous, internal, and external operational risks. Lin and Zhou (2011) 

categorized risks in the external environment, within the supply chain, and internal to the 

organization, while Tang and Musa (2011) emphasized material, financial, and information flow 

risks. Tummala and Schoenherr (2011) compiled an exhaustive list covering demand, delay, 

disruption, inventory, manufacturing breakdown, capacity, supply, system, sovereign, and 

transportation risks. Finally, Samvedi, Jain, and Chan (2013) identified risks in supply, demand, 

process, and environmental dimensions. 
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Chapter 3 Supply Chain Risk Mitigation Decisions 

This chapter is concerned with the decisions within different risk mitigation strategies 

and the time required to implement each. If a supply disruption is likely to occur in the next 

month, six months, or year, the decision maker needs to understand what actions are available to 

mitigate the potential risk. Structural changes to the network comprise most long-term strategies, 

whereas operational decision such as inventory levels and transportation routing decisions 

comprise short-term strategies. 

3.1 Risk Mitigation Decisions with Short Time Horizons 

Even the shortest term risk mitigation strategies require several months advance notice, 

although less may be required depending on lead and production times. These strategies provide 

immediate actions that can help stabilize the operations of the supply chain. Three main 

strategies have been identified: transportation network adjustments, inventory level adjustments, 

and risk mapping/scenario planning.  

Managing transportation networks requires many operational decisions that must be made 

over a short time horizon. For example, adjusting staffing levels and the specific shift hours for 

delivery drivers. However, due to constraints of vehicle fleet size and the number of available 

drivers, it may be easier to make adjustments in one direction (e.g. reductions) than the other, 

limiting the available decision alternatives. Increasing capacity may require hiring more 

personnel, purchasing more equipment, or contracting with a third-party service.   

In addition to these decisions, other adjustments can be made to the transportation 

network. Specific loads and routes may also be adjusted. For example, the objective function 

specified when determining routes can be updated to reflect anticipated short term needs or 

immediate risks.   
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A second decision with a relatively short time horizon is determining what inventory 

level to hold for products. By increasing inventory levels, decision makers can avoid supply 

disruptions by having additional units, whether it be materials needed for production or finished 

product, available when it is needed. Changing inventory levels is dependent on the item’s lead 

time (if it is being purchased) or production time (if it is being manufactured).  

Finally, risk mapping and scenario planning can often be conducted on a shorter time 

horizon. These strategies represent a proactive approach to identifying risks or things that could 

go wrong and determining whether they can be ameliorating. The time horizon for implementing 

mitigation strategies to risks identified in a risk mapping can vary. Thus, while this strategy is 

included within the short-term strategies because the proactive mapping can be conducted 

relatively quickly, it is unclear the time frame for mitigation as it depends on the specifics of a 

scenario identified.  

3.2 Risk Mitigation Decisions with Medium Term Time Horizons 

Medium-term risk mitigation strategies require more planning and coordination than 

short-term measures but can still be implemented within a timeframe of several months to a few 

years. These strategies focus on strengthening supply chain resilience by addressing 

vulnerabilities that cannot be immediately resolved but do not require long-term structural 

changes. Three primary strategies have been identified: supplier diversification, infrastructure 

investments, and contractual adjustments. 

Supplier diversification is a key medium-term strategy that reduces dependence on a 

single source by identifying and onboarding alternative suppliers. If one supplier experiences  

disruption related to a critical part, then another supplier is required in order to source that part 

during the disruption. This process includes vetting potential suppliers, negotiating terms, and 
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establishing redundancy in sourcing critical materials. While diversification enhances supply 

chain flexibility, it can also increase complexity and requires greater monitoring as the number 

of suppliers increases. 

Infrastructure investments, such as expanding warehousing capacity or upgrading 

production facilities, also fall within this time horizon. These investments allow for increased 

storage of critical inventory, improved manufacturing efficiency, and greater adaptability to 

disruptions. Unlike short-term inventory adjustments, medium-term infrastructure changes 

require capital allocation, regulatory approvals, and integration with existing supply chain 

operations. 

Contractual adjustments provide another avenue for mitigating risk. Supply agreements 

can be renegotiated to include more flexible terms, such as volume commitments, delivery 

guarantees, or force majeure clauses that account for unexpected disruptions. Additionally, 

establishing contingency contracts with alternative logistics providers ensures continued 

operations in the event of transportation network failures. 

Medium-term strategies provide a bridge between immediate responses and long-term 

structural changes. By implementing these measures, organizations can proactively manage risk 

and improve supply chain resilience before disruptions escalate into critical failures. 

3.3 Risk Mitigation Decisions with Long Time Horizons 

Long-term risk mitigation strategies focus on structural changes that enhance supply 

chain resilience over multiple years. These strategies require significant investment, strategic 

planning, and coordination across stakeholders. Unlike short- and medium-term measures, long-

term strategies address systemic vulnerabilities. Three primary strategies have been identified: 

supply chain network redesign, technological innovation, and policy and regulatory engagement. 
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Supply chain network redesign involves reconfiguring sourcing, production, and 

distribution networks to improve resilience. This may include relocating manufacturing facilities, 

establishing regional distribution centers, or adopting nearshoring strategies to reduce 

dependency on distant suppliers. Because these changes require extensive feasibility 

assessments, capital investment, and logistical adjustments, they can take years to fully 

implement. 

Technological innovation plays a critical role in long-term risk mitigation. Companies 

invest in advanced analytics, automation, and digital supply chain platforms to improve 

forecasting, optimize operations, and enhance visibility across the supply chain. Emerging 

technologies such as blockchain for traceability, artificial intelligence for demand planning, and 

robotics for warehouse automation offer long-term benefits but require substantial upfront 

investment and integration efforts. 

Policy and regulatory engagement help ensure that supply chains remain adaptable to 

evolving legal and trade environments. Organizations may participate in industry coalitions, 

work with policymakers to influence trade regulations, or develop compliance frameworks for 

sustainability and ethical sourcing requirements. These efforts help mitigate risks associated with 

regulatory changes, geopolitical instability, and environmental concerns. 

Long-term strategies create a foundation for supply chain stability, reducing the likelihood of 

severe disruptions while improving overall efficiency and adaptability. By investing in these 

structural changes, organizations can position themselves for sustained growth and resilience in 

an increasingly uncertain global landscape. 
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3.4 Risk Mitigation Decisions with Uncertain Time Horizons 

Some risk mitigation strategies do not fit neatly into short-, medium-, or long-term 

categories because their implementation timelines can vary significantly based on organizational 

readiness, industry constraints, and external factors. These strategies may be completed in a 

matter of months or could take years to fully realize, depending on complexity and scale. Four 

primary examples of such strategies include software adoption and technology integration, 

workforce development, regulatory compliance adaptation, and process standardization. 

Software adoption and technology integration can range from relatively quick 

implementations to multi-year transformations, depending on the complexity of the system and 

the extent of required infrastructure changes. For instance, adopting a cloud-based inventory 

management system may be completed within months, while integrating an enterprise-wide 

supply chain visibility platform with real-time tracking, predictive analytics, and automated 

decision-making can take years. Factors such as data migration, system compatibility, employee 

training, and regulatory compliance also influence the timeline for full adoption. 

Workforce development encompasses hiring, training, and upskilling employees to 

improve supply chain resilience. The time required to develop a skilled workforce varies widely 

based on factors such as the availability of qualified candidates, the depth of required training, 

and changes in industry demand. For example, hiring additional warehouse staff to address 

seasonal fluctuations can be achieved in a short period, while developing specialized technical 

expertise in areas such as predictive analytics or advanced manufacturing may require multi-year 

training programs and partnerships with educational institutions. 

Regulatory compliance adaptation is another area where timelines can fluctuate 

significantly. Changes in trade policies, environmental regulations, or labor laws may require 
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businesses to adjust supply chain operations quickly, while others allow for phased 

implementation over several years. For instance, adapting to new customs regulations in 

response to geopolitical shifts may demand immediate action, whereas achieving full compliance 

with sustainability reporting standards could be a long-term process requiring gradual 

operational adjustments. 

Process standardization involves streamlining workflows, documentation, and best 

practices across a supply chain network. While some standardization efforts, such as updating 

internal guidelines or implementing new supplier approval processes, can be executed in months, 

broader efforts—such as harmonizing operations across multiple regions or integrating new 

international compliance frameworks—can take years. The complexity of internal coordination, 

external partnerships, and industry-wide collaboration affects the speed of implementation. 

Because of their variable timelines, these strategies require flexible planning and 

continuous reassessment. Organizations must balance short-term operational needs with long-

term strategic goals, ensuring that mitigation efforts align with evolving workforce requirements, 

regulatory landscapes, and technological advancements. 

3.5 Summary and Implications for Research 

This chapter categorized risk mitigation decisions by the time horizon over which the 

decision alternatives can be implemented and the time horizon over which the outcomes and 

impacts can be observed. This research is particularly interested in information timing issues and 

potential changes in information as updates occur. When modeling changes to information that 

will affect a decision, it is important to consider the rate of change of that information relative to 

the time horizon of the specific decision of interest and ensure that the relationship between the 

two makes sense. 
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In the subsequent chapters of this report, we consider decisions with relatively short time 

horizons. The short time horizon decisions reflect a scenario where a major change in the 

operating environment has occurred suddenly, and a decision maker is determining whether to 

take immediate action to address that change. The immediate available decisions are those with 

shorter time horizons. These scenarios reflect the situation in early 2020 with the emergence of 

COVID-19 when people and organizations were determining how to react and what actions to 

take. These scenarios also represent opportunity for the introduction of decision support tools 

because the short time horizon increases the challenge of determining the best course forward. It 

is for these reasons that preparing for a potentially imminent weather disaster is used as an 

illustrative example in Chapter 4 and why inventory management is selected as the illustrative 

example in Chapter 5.  
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Chapter 4 Two-Action Decisions to Mitigate Risk  

This chapter is concerned with single time period risk mitigation decisions in which a risk 

event occurs within a single time period. In this case, the decision maker has several time periods 

over which to prepare for the risk event and some indication that a risk event will occur in a 

specified future time period. The impact of the risk event occurs in a single time period, hence 

the nomenclature of this type of problem as a single time period risk event. Anticipated extreme 

weather events such as hurricanes are an example of this type of single period risk event and will 

be used as an illustrative example throughout the chapter.  

Within this chapter, we consider a two-action risk mitigation decision. Two-action 

decision problems describe scenarios in which the decision maker has two alternatives available 

to them. This class of problem applies to a variety of applications and has been widely studied 

(e.g. Raiffa and Shlaiffer 1961; Abbas et al. 2013). For example, consider the scenario of an 

anticipated adverse weather event such as a hurricane in which the decision maker must 

determine whether to evacuate or to stay. In this example, the decision maker has two 

alternatives, making the scenario a two-action decision problem. Alternatively, this two-action 

decision scenario also applies to scenarios where some mitigation action—such as fortifying a 

plan or moving inventory to a safer location—is discrete, and the alternatives are to either act or 

not act.  

4.1 Problem Formulation: Trusted Information Source 

The analysis is interested in the tradeoff between the accuracy of the prediction 

concerning the risk event over the time leading up to the potential risk event. We model the 

situation using a traditional decision tree approach (Raiffa 1968; Clemen 1991). Circular nodes 

represent uncertainties while square nodes represent decisions. In our analysis, we consider an 
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uncertainty node representing an information source on the likelihood of a risk event occurring, a 

decision node representing the opportunity to make a risk mitigation decisions, and finally 

another uncertainty node to represent whether the risk event occurs or not. Figure 4.1 illustrates 

this general decision tree structure for a two-action decision in a given time period.  

 

 

Figure 4.1 A general structure of the single period, two action decisions considered 

 

 Although the risk event occurs in a single time period, the decision maker has multiple 

time periods leading up to the potential risk event over which to act. The information available to 

the decision maker evolves over time. We consider 𝑘𝑘 total time periods 𝑡𝑡, with 𝑡𝑡 = 0,1, … ,𝑘𝑘. We 

use subscripts to indicate a probability at a specific time, such that 𝑝𝑝𝑡𝑡 is the estimated probability 

at time 𝑡𝑡 that a particular risk event will occur by time 𝑡𝑡 = 𝑘𝑘.  

  When considering the tradeoffs between forecast accuracy and the timing of risk 

mitigating actions, we observe that if the cost/value associated with risk mitigation does not 

change over time, then the optimal course of action is to wait until the last time period available 

to act when the prediction is most accurate. In some cases, “no lost value” may accurately 
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describe the setting. However, in other cases, the cost or value may change over time. Consider 

the case of evacuating for an impending storm. The later the decision maker chooses to evacuate, 

fewer routes may be available, increasing the time to evacuate and limiting lodging options, all 

resulting in higher costs. Such increases in cost over time must be represented in the value 

function. 

An important component of the problem formulation is the development of value 

functions to represent how the different combinations of selected decision alternatives and the 

outcome of key uncertainty (risk event occurs or not) affects the value to the decision maker.   

We must specify the value functions to represent the outcomes of each action the key random 

variable. Further, to represent an evolving dynamic situation in which the available information 

changes over time, the value function will depend on the time period in which the decision 

maker chooses to take risk mitigating actions, if the decision maker should elect to mitigate the 

risks. We consider the cost associated with the risk mitigation action to be known and 

deterministic. We assume it has a fixed cost component 𝑐𝑐, and a variable cost 𝑔𝑔𝑡𝑡, that is a 

function of time, resulting in an additive value function, 

𝑣𝑣(𝑡𝑡) = −𝑐𝑐 − 𝑔𝑔(𝑡𝑡) (4.1) 

Values and equations specifically labeled as costs are reported as their magnitudes. To 

ensure appropriate representation of the monetary value to the decision maker, negative signs are 

added for 𝑣𝑣(𝑡𝑡) in equation 4.1. For simplicity of notation, 𝑣𝑣𝑡𝑡 = 𝑔𝑔(𝑡𝑡) and  𝑔𝑔𝑡𝑡 = 𝑔𝑔(𝑡𝑡). Within our 

problem formulation, we assume that the cost of risk mitigation is deterministic and that the risk 

event is fully ameliorated by the action taken.  

 Given this representation of costs, we must also specify equations to govern the evolution 

of the variable costs of risk mitigation. Similarly to the properties of the changes in the estimated 
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probability of the risk event, the variable costs of risk mitigation for a one-period decision are 

context dependent. Therefore, similar to modeling the changes in probabilities throughout the 

time periods, we consider multiple functional forms to describe different ways in which these 

variable costs may change, including linear, quadratic, and exponential. In each case, we specify 

an initial value 𝑔𝑔0 for time 𝑡𝑡 = 0 and a final value 𝑔𝑔𝑘𝑘 for time 𝑡𝑡 = 𝑘𝑘, with 𝑔𝑔𝑘𝑘 > 𝑔𝑔0. The 

different shapes of the functions between these points represent different evolutions of these 

values over time. With this notation, the governing equations for the case of linear changes are  

𝑔𝑔(𝑡𝑡) = 𝑔𝑔0 +
𝑔𝑔𝑘𝑘 − 𝑔𝑔0

𝑘𝑘
𝑡𝑡 (4.2) 

For the case of quadratically increasing variable risk mitigation costs over time, the governing 

equation is  

𝑔𝑔(𝑡𝑡) = 𝑔𝑔0 + �
𝑔𝑔𝑘𝑘 − 𝑔𝑔0
𝑘𝑘2

� 𝑡𝑡2 (4.3) 

The third family of governing equations for the time-variable costs is exponential, 

𝑔𝑔(𝑡𝑡) = 𝑔𝑔0𝑒𝑒
ln�𝑔𝑔𝑘𝑘𝑔𝑔0

�𝑡𝑡/𝑘𝑘 (4.4) 

The formulation of equation 4.4 is conducive to numerical analysis but introduces the constraint 

𝑔𝑔0 > 0. Because initial costs in time 𝑡𝑡 = 0 should be predominantly weighted by the fixed cost, 

and to limit the number of required parameter specifications in the analysis, we specify the initial 

time-variable cost as 1% of the fixed cost, 𝑔𝑔0 = 0.01𝑐𝑐. The nonzero nature of 𝑔𝑔0 also explains 

its inclusion in equations 4.2 and 4.3.  

We must also consider the cost incurred if the risk event occurs and no mitigating actions 

have been taken. We model this cost as a deterministic cost, 𝑟𝑟, which represents a negative value 

to the decision maker. If no risk mitigation actions are taken and the risk event does not occur, 

the value is 0. If we assume that the available risk mitigation fully ameliorates the cost of the risk 
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event, then the monetary outcome when risk mitigation is undertaken has the same outcome 

regardless of the occurrence of the risk event. The decision tree can then be simplified as shown 

in Figure 4.2.  

 

 

Figure 4.2 The single period, two-action decision tree when the decision maker accepts the 
probability from the information source. 

 

 Since uncertainty is an integral component of the analysis, we must consider preferences 

for a monetary equivalent value under uncertainty. We consider a risk averse decision maker that 

is rational and follows the axioms of normative decision making specified by von Neumann and 

Morgenstern (1947). We represent preferences under uncertainty with an exponential utility 

function of the form 

𝑢𝑢(𝑥𝑥) = 1 − 𝑒𝑒−𝛾𝛾𝛾𝛾 (4.5) 

where 𝛾𝛾 represents the constant absolute risk aversion and 𝑣𝑣 represents a deterministic value 

represented as a monetary equivalent.  

This utility function allows the analysis to consider the effect of risk preferences with a 

constant, absolute value for risk aversion. 

We must also specify functional forms that govern how the estimated probability of the 

risk event occurring changes over time. Because these values and the way they change are 
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anticipated to be highly context dependent, we consider multiple governing functional forms 

including linear, quadratic, and exponential. In each case, we will specify an initial value for 

time 𝑡𝑡 = 0 and a final value for time 𝑡𝑡 = 𝑘𝑘. These values are denoted 𝑝𝑝0 and 𝑝𝑝𝑘𝑘, respectively, 

with the constraint 𝑝𝑝0 ≠ 𝑝𝑝𝑘𝑘 and bounds 0 < 𝑝𝑝0 < 1 and 0 < 𝑝𝑝𝑘𝑘 < 1; we do not model cases 

with probabilities of 0 or 1 as we assume there is no certainty on the occurrence of the risk event. 

The different shapes of the functions between these points will then represent different patterns 

of changes in these values over time. For 𝑝𝑝(𝑡𝑡), the initial and final values for the probability of 

the risk event are denoted 𝑝𝑝0 and 𝑝𝑝𝑘𝑘. With this notation, the governing equation for the case of 

linear changes is  

𝑝𝑝(𝑡𝑡) = 𝑝𝑝0 +
𝑝𝑝𝑘𝑘 − 𝑝𝑝0

𝑘𝑘
𝑡𝑡 (4.6) 

with the constraint 0 ≤ 𝑡𝑡 ≤ 𝑘𝑘.  

The governing equation for the case of quadratic changes in  𝑝𝑝𝑡𝑡 depends on whether 𝑝𝑝𝑡𝑡 is 

increasing or decreasing over time. In the case that 𝑝𝑝𝑡𝑡 is increasing with time, the equation 

becomes 

𝑝𝑝(𝑡𝑡) = 𝑝𝑝0 + �
𝑝𝑝𝑘𝑘 − 𝑝𝑝0
𝑘𝑘2

� 𝑡𝑡2 (4.7) 

with the constraint 0 ≤ 𝑡𝑡 ≤ 𝑘𝑘.  

Finally, the governing equation for the case of exponential changes in 𝑝𝑝𝑡𝑡 is  

𝑝𝑝(𝑡𝑡) = 𝑝𝑝0𝑒𝑒
ln(𝑝𝑝𝑘𝑘/𝑝𝑝0)

𝑘𝑘 𝑡𝑡 (4.8) 

with the constraint 0 ≤ 𝑡𝑡 ≤ 𝑘𝑘. 

  With this problem formulation, many combinations of governing functions and variables 

are possible. We will consider all possible combinations of governing functions. For ease of 

reference, each combination of the governing functions for the change in time-variable risk 
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mitigation costs and the change in the estimated probability of the risk event occurring will be 

assigned a case number. These combinations and case numbers are provided in Table 4.1.  

 

Table 4.1 The governing equations used in each case 

Case Governing Equation Functional Form 
g(t) p(t) 

1 Linear Linear 
2 Linear Quadratic 
3 Linear Exponential 
4 Quadratic Linear 
5 Quadratic Quadratic 
6 Quadratic Exponential 
7 Exponential Linear 
8 Exponential Quadratic 
9 Exponential Exponential 

 

 Within the analysis, there are several other parameters to consider. We must examine the 

effect of the cost of the risk event occurring without mitigation, the fixed risk mitigation cost, the 

maximum time-varying risk mitigation cost, the initial estimated probability of the risk event, the 

decision maker’s risk aversion, and the length of the time horizon. We consider low (𝑟𝑟 = 5,000) 

and high (𝑟𝑟 = 10,000) risk event costs. To reduce the number of combinations of parameters, we 

consider low risk mitigation costs with 𝑐𝑐 = 500 and 𝑔𝑔𝑘𝑘 = 5,000, and high risk mitigation costs 

with 𝑐𝑐 = 1,000 and 𝑔𝑔𝑘𝑘 = 10,000. We consider low (𝑝𝑝0 = 0.05) and high (𝑝𝑝0 = 0.50) initial 

estimated probabilities of the risk event occurring. We consider low, moderate, and high risk 

aversion, modeled as 𝛾𝛾 = 0.00003, 𝛾𝛾 = 0.0003, and 𝛾𝛾 = 0.001. Finally, given the large number 

of parameter combinations to consider, and observing that the two different values of 𝑝𝑝0 can 

provide insight to the effect of different time horizons, this analysis considers a single time 
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horizon length of 𝑘𝑘 = 20. We also only consider increasing 𝑝𝑝(𝑡𝑡), noting that decreases in 𝑝𝑝(𝑡𝑡) 

over time would increase the attractiveness of the ‘no mitigation action’ alternative.  

Omitting the risk aversion parameter, these parameter specifications result in eight 

variations to consider for each case of governing functions. These variations are numbered in 

Table 4.2. To facilitate references to specific combinations of parameters, we refer to the case 

number, followed by a period and the specific parameter variation number. Case 1.1 refers to 

case 1 from Table 4.1 and parameter variation 1 from Table 4.2; case 1.2 refers to case 1 from 

Table 4.1 with parameter variation 2 from Table 4.2, and so forth.  

 

Table 4.2 Variations of parameters for each case 

Variation 𝒓𝒓 Mitigation Cost 𝒑𝒑𝟎𝟎 
𝒄𝒄 𝒈𝒈𝒌𝒌 

1 5000 500 5000 0.05 
2 10000 500 5000 0.05 
3 5000 1000 10000 0.05 
4 10000 1000 10000 0.05 
5 5000 500 5000 0.50 
6 10000 500 5000 0.50 
7 5000 1000 10000 0.50 
8 10000 1000 10000 0.50 

 

To examine the effects of each case and the variation of the parameters for that case, we 

calculate the certain equivalent for each action in the two-action decision at each time period. 

The certain equivalent is a concept from decision analysis that provides the deterministic value 

for an uncertain deal that is tailored to a decision maker such that the decision maker is precisely 

indifferent between selecting the deterministic value and the uncertain deal (Howard and Abbas 

2015). Because the problem formulation exclusively considers costs, the certain equivalents for 

each alternative will be negative, but the preferred alternative will be the one with the larger (less 
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negative) certain equivalent. To best convey how the certain equivalents change over the time 

horizon, the results are presented in the form of line graphs. When presenting the results, we take 

advantage of the fact that the risk mitigation costs are modeled as being deterministic and 

therefore do not change with changes in risk aversion because there is no uncertainty. We can 

therefore reduce the number of figures by plotting certain equivalents for the ‘no mitigating 

actions’ alternative for each risk aversion coefficient on the same plot, with each of these three 

lines being compared to a single line displaying the cost of risk mitigation at the given time.    

4.2 Results: Trusted Information Source 

  We first consider case 1, with linear evolution of both the time-variable risk mitigation 

costs and the estimated probability of the risk event occurring. The results for case 1 are shown 

in Figure 4.3. The results for cases 2 through 6, with linear evolution of the time-variable risk 

mitigation costs and quadratic evolution of the estimated probability of the risk event occurring, 

are shown in Figure 4.4 through Figure 4.8, respectively.    
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Figure 4.3 The certain equivalents for case 1 with variations on the parameters: 1.1 (a), 1.2 (b), 
1.3 (c), 1.4 (d), 1.5 (e), 1.6 (f), 1.7 (g), and 1.8 (h) 
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Figure 4.3 (cont.) The certain equivalents for case 1 with variations on the parameters: 1.1 (a), 
1.2 (b), 1.3 (c), 1.4 (d), 1.5 (e), 1.6 (f), 1.7 (g), and 1.8 (h) 
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Figure 4.4 The certain equivalents for case 2 with variations on the parameters: 2.1 (a), 2.2 (b), 
2.3 (c), 2.4 (d), 2.5 (e), 1.6 (f), 2.7 (g), and 2.8 (h) 
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Figure 4.4 (cont.) The certain equivalents for case 2 with variations on the parameters: 2.1 (a), 
2.2 (b), 2.3 (c), 2.4 (d), 2.5 (e), 1.6 (f), 2.7 (g), and 2.8 (h) 
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Figure 4.5 The certain equivalents for case 3 with variations on the parameters: 3.1 (a), 3.2 (b), 
3.3 (c), 3.4 (d), 3.5 (e), 1.6 (f), 3.7 (g), and 3.8 (h) 
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Figure 4.5 (cont.) The certain equivalents for case 3 with variations on the parameters: 3.1 (a), 
3.2 (b), 3.3 (c), 3.4 (d), 3.5 (e), 1.6 (f), 3.7 (g), and 3.8 (h) 
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Figure 4.6 The certain equivalents for case 4 with variations on the parameters: 4.1 (a), 4.2 (b), 
4.3 (c), 4.4 (d), 4.5 (e), 1.6 (f), 4.7 (g), and 4.8 (h) 
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Figure 4.6 (cont.) The certain equivalents for case 4 with variations on the parameters: 4.1 (a), 
4.2 (b), 4.3 (c), 4.4 (d), 4.5 (e), 1.6 (f), 4.7 (g), and 4.8 (h) 
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Figure 4.7 The certain equivalents for case 5 with variations on the parameters: 5.1 (a), 5.2 (b), 
5.3 (c), 5.4 (d), 5.5 (e), 5.6 (f), 5.7 (g), and 5.8 (h) 
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Figure 4.7 (cont.) The certain equivalents for case 5 with variations on the parameters: 5.1 (a), 
5.2 (b), 5.3 (c), 5.4 (d), 5.5 (e), 5.6 (f), 5.7 (g), and 5.8 (h) 
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Figure 4.8 The certain equivalents for case 6 with variations on the parameters: 6.1 (a), 6.2 (b), 
6.3 (c), 6.4 (d), 6.5 (e), 6.6 (f), 6.7 (g), and 6.8 (h) 
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Figure 4.8 (cont.) The certain equivalents for case 6 with variations on the parameters: 6.1 (a), 
6.2 (b), 6.3 (c), 6.4 (d), 6.5 (e), 6.6 (f), 6.7 (g), and 6.8 (h) 
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We observe that the results for cases 7 through 9, while not identical, follow similar 

trends as cases 4 through 6. To conserve space within the body of this report, we present these 

results within Appendix A, in Figure A.1, Figure A.2, and Figure A.3.  

 From the results in Figure 4.4 through Figure 4.8, as well as those in Figure A.1 to Figure 

A.3, we observe that for a risk event associated with high costs, the alternative ‘take mitigating 

action’ tends to dominant the ‘no mitigating action’ alternative, with some exceptions for the 

least risk averse decision makers and a small initial  𝑝𝑝0. Similarly, we observe that a large initial 

𝑝𝑝0 consistently results in risk mitigation being the preferred alternative in early time periods. We 

suggest that extensions and future research focus on scenarios that involve a small initial  𝑝𝑝0 and 

low risk event costs relative to the mitigation costs.   

4.3 Extensions: Untrusted Information Source 

The analysis is interested in the tradeoff between the accuracy of the prediction over time 

and reductions in the value available to the decision maker over time. However, the problem 

becomes more complicated in the event that the decision maker does not trust the information 

source. When analyzing this extension of the problem, we must also consider the ways in which 

a decision maker might adjust the probability estimates from the information source. We must 

specify some adjustment function, 𝑎𝑎(𝑝𝑝(𝑡𝑡)) that takes the probability estimate at time t, 𝑝𝑝(𝑡𝑡), and 

modifies it in some way. The resulting effect on the decision tree is illustrated in Figure 4.9. In 

Figure 4.9, the decision maker does not accept the estimated probability of the risk event as 

provided by the information source and instead implements an adjustment to the probability, 

denoted 𝑎𝑎(𝑝𝑝𝑡𝑡). 
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Figure 4.9 The single period, two-action decision tree when the probability from the information 
source is adjusted by the decision maker. 

 

This extension adds degrees of freedom to the problem because there are many ways such 

an adjustment could conceivably occur. These adjustments that individuals make to probability 

estimates when they do not trust the information source represent a direction for future research 

that will be beneficial to the development of any decision support system.  

4.4 Summary 

This chapter explored single-period, two-action risk mitigation decisions where a 

decision maker must determine whether or not to act to mitigate a potential future risk event, 

such as an impending hurricane or other extreme weather event. We rely on decision analytic 

techniques including a decision tree framework to model the tradeoff between forecast accuracy 

over time and increasing costs of risk mitigation. Different functional forms—linear, quadratic, 

and exponential—were considered to describe the evolution of both the estimated probability of 

the risk event and the time-variable mitigation costs. 

The results indicate that for high-cost risk events, taking mitigating action is generally the 

preferred strategy, particularly when the initial probability of the event occurring is high. The 

analysis also highlighted the impact of risk aversion, with more risk-averse decision makers 

favoring early mitigation even at higher costs. Cases with lower initial probabilities and lower 
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event costs relative to mitigation costs present more nuanced decision tradeoffs, warranting 

further study. 

This work suggests a few directions for future research. Identifying sources of empirical 

data to support methods to better understand and model the evolution of forecasts, and how and 

whether they improve over time, would be beneficial. Also, understanding how people perceive 

probability estimates from different information sources could be incorporated into the model to 

enable extensions to scenarios when an information source is not trusted. The work in this 

chapter provides insights to the tradeoffs of timing with changing estimates of risk event 

probabilities and changing costs, providing a useful initial step in the development of a decision 

support tool, but future work remains.  
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Chapter 5 Multiple Action Decisions to Mitigate Risk 

Similar to the prior chapter, this chapter is again concerned with single time period risk 

mitigation decisions in which a risk event occurs within a single time period. However, we now 

consider the case in which the decision maker has multiple decision alternatives available and 

can make sequential decisions over multiple time periods about how best to mitigate the risk. 

These properties align with many situations encountered within supply and transportation 

networks. Within our work, we include a general framework for analysis of decisions within this 

context in which there is a tradeoff between forecast accuracy over time and value over time. We 

demonstrate how the framework can be applied through the analysis of an inventory decision, 

which serves as an illustrative example. 

 Inventory management is an important component of supply chain management and 

represents an important mechanism for mitigating the risk of disruptions within supply chains. 

These decisions also affect the volume of a product that must be shipped to a specific location 

and timing of those shipments, thereby impacting the transportation network. The newsvendor 

problem is a classic topic in the operations research literature (Arrow et al. 1951) with many 

variations (Qin et al. 2011). Researchers have examined the newsvendor problem and optimal 

product re-order levels in the case of an unknown demand distribution (Benzion et al. 2010; 

Katehakis et al. 2020) and with demand shocks (O’Neil et al. 2016). Other variations examined 

include multi-product inventory (Abdel-Malek and Areeratchakul 2007; Özler et al. 2009), 

stocking inventory at multiple locations (Yang et al. 2021; Govindarajan et al. 2021), stochastic 

lead times (Song et al. 2000; Wang and Tomlin 2009), and product substitutability (Zhang et al. 

2021).  
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 A distinguishing feature of our work is the consideration of the tradeoff between forecast 

accuracy and supply availability. We consider a single selling period with multiple time periods 

over which to observe signals and estimate demand (with increasing accuracy), and multiple time 

periods over which to order inventory (with decreasing likelihood of availability). This 

formulation reflects the experience of many retailers during the COVID-19 pandemic in which 

many factors contributed to supply disruptions and product shortages as companies could not 

obtain the desired inventory (Chowdhury et al. 2021). The consideration of uncertain supply 

availability relates this work to several studies in the literature, including Serel (2014), Kazaz 

and Webster (2015), Käki et al. (2015), Sayın et al. (2015), Ray and Jenamani (2016), Ma et al. 

(2016), and Zheng et al. (2023).  

 The remainder of this chapter presents the general framework for the analysis, the 

problem formulation for our variation of the newsvendor problem, and the results of sensitivity 

analysis. 

5.1 General Problem Framework and Notation 

We begin by outlining a framework to approach this type of problem. In this pursuit, we 

largely follow the three stages of decision analysis outlined by Howard (1968): deterministic, 

probabilistic, and informational. In this approach, the first stage is a deterministic analysis in 

which the decision scenario and its scope is defined, along with the available alternatives and 

relevant uncertainties. The second stage is the probabilistic analysis in which the probabilities are 

determined and preferences under uncertainty are specified. The third stage is informational 

analysis that examines what information is most useful to the decision maker. We follow these 

steps with the caveat that within our approach, we assume an element of time which makes the 

determination of the optimal timing of policies less clear. To emphasize this analysis, we add a 
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stage between the probabilistic and informational stages that we call the sensitivity and policy 

analysis phase. This emphasis deviates from the representation by Howard (1968), in which 

sensitivity analysis was embedded in the other phases. This general framework is illustrated in 

Figure 5.1. 

 

 

Figure 5.1 The general framework for the analysis. 

 

Within our analysis, we focus on the sensitivity and policy analysis portion of the 

problem.  By studying the best course of action with information accuracy increasing over time 

but the available alternatives decreasing, we can provide decision support to the decision maker 

as well as provide a means to provide insight to support a stronger analysis in the informational 

phase.   

We assume the decision scenario is well-defined. The scenario involves an uncertainty 

with an associated random variable that impacts the value to the decision maker. The outcome of 

the uncertainty will be revealed in a future, known time window. This random variable 

represents an impact of the risk event. In the context of inventory problems, it is the stochastic 

demand. Action may be taken to mitigate the impact of the risk event across different time 

periods, but the total impact of risk mitigating actions can be represented by a single variable. In 

the context of inventory problems, the risk mitigation involves selecting an appropriate inventory 

level to meet the anticipated demand. We assume a value function can be specified that 
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incorporates the impact of any random variable in addition to the action(s) taken by the decision 

maker.  

Illustrative notation for this general framework will use variables selected for ease of 

interpretation within an inventory problem. We assume 𝑘𝑘 total time periods. We assume the 

relevant uncertainty, 𝐷𝐷, has a probability distribution that changes over time. At time period 𝑡𝑡, 

the probability distribution over 𝐷𝐷 is 𝑓𝑓𝐷𝐷𝑡𝑡(𝑑𝑑). The standard deviation is 𝜎𝜎𝐷𝐷𝑡𝑡 . We require that 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜎𝜎𝐷𝐷𝑡𝑡 ) < 0. Any risk mitigating action taken in time period 𝑡𝑡 can be represented by a scalar 

measurement and is denoted 𝑠𝑠𝑡𝑡. The total impact of mitigating actions at time 𝑡𝑡 can be found as 

the sum of actions across all prior time periods, 𝑆𝑆𝑡𝑡 = ∑ 𝑠𝑠𝑖𝑖𝑡𝑡
𝑖𝑖=1 . Constraints on the actions are 

represented by a separate random variable, 𝑀𝑀, with observations in each time period denoted 𝑚𝑚𝑡𝑡. 

These variables place an upper bound constraint on the actions that may be taken by the decision 

maker, denoted as 𝑠𝑠𝑡𝑡 ≤ 𝑚𝑚𝑡𝑡. This constraint similarly has a probability distribution that changes 

over time and is denoted 𝑓𝑓𝑀𝑀𝑡𝑡 (𝑀𝑀).  

The value function can be specified and may include random variables. It is denoted 

𝑉𝑉(𝑑𝑑, 𝑆𝑆𝑘𝑘). For this chapter, we assume a risk neutral decision maker. A unique characteristic of 

the risk neutral decision maker is that they value an uncertain deal by its expected value. Given 

some of the numeric complexities in the formulation of a newsvendor problem in which 

information is updated over time and product availability changes over time, this assumption 

improves the problem tractability. Thus, once we specify the value function, the decision maker 

is interested in the mean or the expected value of the value function for each alternative course of 

action.  

 Using this framework, we examine the tradeoff between forecast accuracy for an 

uncertainty of interest and the availability of risk mitigating alternatives under different 



46 

 

conditions within the context of an inventory decision. First, we consider increasing forecast 

accuracy over time in isolation. Next, we consider both increasing forecast accuracy and 

stochastic availability of alternatives where the expected quantity of product available is 

decreasing. 

5.2 Illustrative Example: An Inventory Decision 

The newsvendor problem was introduced at the beginning of this chapter and serves as 

the basis for the deterministic phase of this analysis. A decision maker wants to maximize value 

by selling as many units of product as possible while having as few as possible leftover. Because 

the demand for the product is uncertain, this scenario represents a decision under uncertainty. It 

is a multiple action decision because the decision maker has many decision alternatives from 

which to select a course of action; each inventory level represents a different alternative. Within 

our formulation, each combination of inventory purchases at different time periods represents a 

different decision alternative. We use the newsvendor problem to illustrate issues within risk 

mitigation decisions broadly.  

Within our analysis, we assume the following. The demand distribution is known for the 

current time period but not future time periods. Buying one unit of inventory costs 𝑏𝑏. The 

product is sold at price 𝑝𝑝. The cost per unit of having an insufficient inventory is 𝑐𝑐𝑢𝑢, where the 

subscript 𝑢𝑢 is chosen to denote under-ordering. The cost per unit of having too much inventory is 

𝑐𝑐𝑜𝑜, where the subscript 𝑜𝑜 is chosen to indicate over-ordering.  

Within a single time period problem, the optimal order quantity 𝑄𝑄∗, for the risk neutral 

decision maker is found using the inverse of the demand distribution. Assuming a one period 

problem with a cumulative demand function 𝐹𝐹𝐷𝐷(𝑑𝑑) and inverse demand function 𝐹𝐹𝐷𝐷−1(𝑑𝑑), the 

optimal order quantity is 
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𝑄𝑄∗ = 𝐹𝐹𝐷𝐷−1(
𝑐𝑐𝑢𝑢

𝑐𝑐𝑢𝑢 + 𝑐𝑐𝑜𝑜
) (5.1) 

The ratio of underage costs to the sum of underage and overage costs is sometimes called 

the critical ratio given its central role in determining 𝑄𝑄∗. This optimal order quantity is calculated 

to maximize the expected profit, 

𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] = 𝑝𝑝 ∙ min(𝑄𝑄,𝐷𝐷) − 𝑏𝑏 ∙ 𝑄𝑄 − 𝑐𝑐𝑜𝑜(𝑄𝑄 − 𝐷𝐷)+ − 𝑐𝑐𝑢𝑢(𝐷𝐷 − 𝑄𝑄)+ (5.2) 

where 𝑄𝑄 is the selected order quantity. 

 In the following two subsections, we consider how moving from a one-time period 

problem to a scenario in which the decision maker has multiple time periods over which to 

determine 𝑄𝑄 while estimated probability distributions over relevant uncertainties update in each 

time period, affect the optimal order quantity and expected value to the decision maker.  

5.3 Increasingly Accurate Demand Forecasts 

First, we consider the case of increasingly accurate demand forecasts. We model 

increasing accuracy in the demand distribution by specifying a decrease in the standard deviation 

of the demand distribution over time. We consider linearly decreasing standard deviations,   

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜎𝜎𝐷𝐷𝑡𝑡 ) =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Variations in the functional form of the decrease in the standard deviation 

is an opportunity for future research.  

We observe that as 𝜎𝜎𝐷𝐷 decreases, the direction of change in the optimal order quantity 

depends on the relative size of 𝑐𝑐𝑜𝑜 to 𝑐𝑐𝑢𝑢. In the case of 𝑐𝑐𝑜𝑜 < 𝑐𝑐𝑢𝑢, the optimal order quantity will 

decrease due to the relatively larger penalty associated with over ordering. In this case, the 

increasingly limited availability of units to purchase will not have a limiting effect since the 

decision maker will already have ordered an optimal inventory quantity in the first time period 

that is greater than the updated value once the estimated probability distribution changes. 
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Ultimately, we are interested in the tradeoff between increasing forecast accuracy and decreasing 

available alternatives, we do not pursue this set of parameters further.  

On the other hand, when 𝑐𝑐𝑜𝑜 > 𝑐𝑐𝑢𝑢, the opposite is true. The optimal order quantity will 

increase as 𝜎𝜎𝐷𝐷 decreases, but this increase may be stymied by limited supply availability. The 

magnitude of the change in the optimal order quantity depends on the magnitude of the critical 

ratio. This effect is shown visually in Figure 5.2. 

 

 

Figure 5.2 The changes in 𝑄𝑄∗ by critical ratio as demand forecast accuracy increases. 

 

The calculations in Figure 5.2 use 𝜇𝜇𝐷𝐷 = 100, 𝜎𝜎𝐷𝐷1 = 20,  𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜎𝜎𝐷𝐷𝑡𝑡 ) =  −1, and 𝑐𝑐𝑜𝑜 = 10. The 

underage cost 𝑐𝑐𝑢𝑢 varies from eight to one to obtain critical ratios ranging from 0.47 to 0.17. As 

shown in Figure 5.2, when the critical ratio is smaller, indicating a larger difference between the 

underage and overage costs, the optimal order quantity is more sensitive to changes in the 

accuracy of the demand distribution.  
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5.4 Increasingly Accurate Demand Forecasts with Limited Product Availability 

Next, we consider how changes in the availability of supply affect decision making. We 

assume the available supply of the product, or the maximum quantity available in the market 

follows a normal distribution with a constant standard deviation and decreasing mean over time. 

For each time period 𝑡𝑡, we denote the distribution 𝑓𝑓𝑀𝑀𝑡𝑡 (𝑀𝑀). We assume that the mean decreases 

linearly with time, making 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜇𝜇𝑀𝑀𝑡𝑡 ) a constant value. We truncate the distribution at 0.  

To find the reduced value to the decision maker as a result of limited product availability, 

for each time period we must know the current expected inventory, 𝐸𝐸𝑡𝑡[𝐼𝐼], and the current optimal 

order quantity given the current demand forecast assuming no limitation in supply 𝑄𝑄𝑡𝑡∗. Then, we 

calculate the probability that 𝐸𝐸𝑡𝑡[𝐼𝐼] < 𝑚𝑚𝑡𝑡 < 𝑄𝑄𝑡𝑡∗ for each potential observation of 𝑀𝑀 within time 

period 𝑡𝑡, denoted 𝑚𝑚𝑡𝑡. For each 𝑚𝑚𝑡𝑡, we must also find the associated expected profit when the 

order quantity is limited by 𝑚𝑚𝑡𝑡, enabling the calculation of the overall expected profit when 

supply is limited as specified by the model parameters.  

We examine this problem numerically, considering the impact of both increasingly 

accurate demand forecasts and limited market availability of the product through sensitivity 

analysis. We begin by examining variations in the critical ratio of underage costs to the sum of 

underage and overage costs. For this initial examination, we use the demand and available supply 

parameters specified in Table 5.1 and vary the newsvendor problem parameters as specified in 

Table 5.2. We consider five different critical ratios and number each scenario 5.1.1 through 

5.1.5.  
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Table 5.1 The parameters that remain unchanged in the first five scenarios examined 

Demand Parameters  
Supply Limit 
Parameters  

Newsvendor 
Parameters 

𝜇𝜇𝐷𝐷 1000  𝜇𝜇𝑀𝑀0  1000  k 10 
𝜎𝜎𝐷𝐷0 200  𝜎𝜎𝑀𝑀 400  p 40 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜎𝜎𝐷𝐷) -10  

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜇𝜇𝑀𝑀) 
-100  b 15 

 

Table 5.2 The parameters that change across the first five scenarios examined 

Case cu co cu/(cu+co) 
5.1.1 3 5 0.375 
5.1.2 2 5 0.286 
5.1.3 1 5 0.167 
5.1.4 0.5 5 0.091 
5.1.5 0.25 5 0.048 

 

The results for the five cases are shown in Figure 5.3 through Figure 5.7. They show that 

smaller critical ratios are associated with larger percentages of lost expected value. 

 

 

Figure 5.3 Changes in expected value for case 5.1.1, shown as (a) the magnitude in dollars and 
(b) the percent value lost when supply is limited.  
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Figure 5.4 Changes in expected value for case 5.1.2, shown as (a) the magnitude in dollars and 
(b) the percent value lost when supply is limited.  

 

 

Figure 5.5 Changes in expected value for case 5.1.3, shown as (a) the magnitude in dollars and 
(b) the percent value lost when supply is limited.  
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Figure 5.6 Changes in expected value for case 5.1.4, shown as (a) the magnitude in dollars and 
(b) the percent value lost when supply is limited.  

 

 
Figure 5.7 Changes in expected value for case 5.1.5, shown as (a) the magnitude in dollars and 

(b) the percent value lost when supply is limited.  

 

 We are also interested in how changes in the properties of the limited supply of inventory 

affect decision making. We consider another set of five scenarios and modify the initial mean 

supply of inventory to be a multiple of the mean demand. We then reduce the mean supply of 

inventory by a step such that by the last time period, the mean is zero. We use 𝑐𝑐𝑜𝑜 = 5 and  𝑐𝑐𝑜𝑜 =
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1, along with the same newsvendor parameters as the previous cases. Table 5.3 shows the initial 

distribution mean of the available supply for each scenario now considered, and the resulting 

time period decrement for each.  

 

Table 5.3 The change in parameters describing available supply 

Case  𝜇𝜇𝐷𝐷  𝜎𝜎𝐷𝐷0  𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜎𝜎𝐷𝐷) 𝜇𝜇𝑀𝑀0  𝜎𝜎𝑀𝑀 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜇𝜇𝑀𝑀) 

5.2.1 1000 200 -10 1000 300 -100 
5.2.2 1000 200 -10 2000 300 -200 
5.2.3 1000 200 -10 3000 300 -300 
5.2.4 1000 200 -10 4000 300 -400 
5.2.5 1000 200 -10 5000 300 -500 

 

The effect of this change on the percentage expected value lost is shown in Figure 5.8(a-

e).  
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(e) 

Figure 5.8 Changes in the percentage value lost for scenarios 5.2.1 (a) through 5.2.5 (e), showing 
increases in the initial supply but with faster reductions in availability. 
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From these results, we observe that the availability of supply in the initial time periods 

plays an important role in determining the overall percentage value loss. The results also show 

how reductions in the availability of supply can have a large impact on the value observed by the 

decision maker.  

5.5 Early Risk Mitigation 

We consider the advantage garnered by a decision maker who observes changes in the 

marketplace in the early time periods and decides to increase their inventory holding proactively. 

Under some conditions, it might also be possible that tightened supply availability is correlated 

with high demand. If the decision maker believes there is reason for such a correlation to exist, 

then they may select a larger amount by which to increase their chosen inventory level.  

 To examine the advantages accrued to the decision maker who observes changes in the 

market early, we reexamine scenarios 5.2.1 through 5.2.5 in the case that the decision maker 

makes an adjustment to their strategy at time 𝑡𝑡 = 5. We consider the case when the decision 

maker observes tightening supply in the market and uses this observation to update their belief 

about the demand distribution; we assume the decision maker increases their estimate of the 

mean demand 𝜇𝜇𝐷𝐷 by an amount equal to the initial standard deviation of the distribution, 𝜎𝜎𝐷𝐷0. 

Because we assume demand is normally distributed, this modification is equivalent to the 

decision maker determining that the initial (approximately) 84th percentile of the demand 

distribution actually represents the mean of the demand distribution. In other words, the decision 

maker believes the initial demand distribution underestimated the actual demand for the product. 

Given this updated estimate of the demand distribution, the decision maker will increase their 

desired inventory level according to equation 5.1, where the inverse demand distribution is 

updated to reflect the updated belief over the mean.  
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 Care must be taken when calculating the resulting expected value from this adjustment to 

the inventory strategy. The expected value is calculated based on the decision maker’s belief of 

the probability distributions. The use of two separate distributions would be similar to using two 

different systems of measurement when making a comparison. To ensure a fair comparison, we 

must be consistent in the selected parameters. Because we are using the initial situation as the 

baseline, we use the original problem parameters when calculating the expected value. In the 

adjusted strategy, the expected inventory quantity may also exceed the expected demand. In this 

case, the overage penalty will apply, penalizing inventory levels that are too large. For this 

analysis, we only consider the case of limited product supply and compare the two decision 

making strategies. The results for scenarios 5.2.1 through 5.2.5 are shown in Figure 5.9(a-e). In 

all cases, the expected value in the final time period is higher when the decision maker adjusts 

the inventory strategy at the midpoint in time after observing the changes in the distributions in 

the early time periods.  
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(e) 

Figure 5.9 Comparison of the expected value with limited supply availability with and without 
an adjustment to strategy at time t=5, for scenarios 5.2.1 (a) through 5.2.5 (e). 
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5.6 Summary 

This chapter explored multiple action risk mitigation decisions where the mitigating 

actions are taken sequentially over time. An inventory decision is used to illustrate the tradeoffs 

between increasing forecast accuracy and reductions in available decision alternatives over time. 

The results underscore the important role played by specifications of the decision maker’s belief 

about factors relevant to the decision scenario. Differences in the parameters describing the 

reduction in available supply of the product result in markedly different expected values. Thus, 

differences in belief over how the market and available supply is changing will play important 

roles in changing what quantity of inventory is determined to be optimal. 

This chapter has also examined the impact of early adjustments in risk mitigation 

strategy. If the decision maker notices early indications that the supply is tightening, and 

interprets that to indicate a higher demand, then the resulting shift in belief over the demand 

distribution enables the decision maker to avoid lost value due to the inability to source the 

product.  

Although this chapter examines an inventory problem, the results suggest that the 

tradeoff between accuracy of probability estimates and changes in the availability of decision 

alternatives provides a rich environment for study. Given the different pull of these two effects, it 

is not immediately obvious in any given scenario what the optimal course of action should be, 

suggesting that these scenarios would benefit from enhanced decision support tools. This work 

provides a proof-of-concept for the need to examine this problem more closely. This work also 

underscores the importance of future studies that include the identification of available empirical 

data relevant to these types of situations and the development of models to reflect this situation 

in a variety of real-world settings.  
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Chapter 6 Conclusion 

This work has examined the tradeoffs in risk mitigation decisions, beginning by 

reviewing them in the domain of supply chain and transportation networks and by identifying the 

relative time frame for the implementation and realization of the outcomes of those decisions. 

The remainder of the work focused on short term risk mitigation scenarios in which the decision 

maker would need to balance increasingly accurate information sources with fewer decision 

alternatives. 

Key outcomes of the research include the development of a general framework for 

analyzing both one-time and sequential risk mitigation decisions. These frameworks lay the 

groundwork for dynamic decision support tools to improve the management of transportation 

systems with the goal of improving both efficiency and safety. 
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Appendix A Additional Results on the Two-Action Decision Problem 

 This appendix contains additional results from the analysis of the one-period, two-action 

decision problem in Chapter 4 for when the decision maker accepts the probability estimates 

from the information source as provided. This appendix refers to the case numbers for each 

combination of governing equations in Table 4.1, followed by the combination parameter 

specifications listed in Table 4.2.  

The results for case 7, with exponential time-varying risk mitigation costs and a linearly 

increasing estimated probability of the risk event occurring, are shown in Figure A.1. 

 

 

Figure A.1 The certain equivalents for case 7 from Chapter 4, with variations on the parameters: 
7.1 (a), 7.2 (b), 7.3 (c), 7.4 (d), 7.5 (e), 7.6 (f), 7.7 (g), and 7.8 (h) 
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Figure A.1 (cont.) The certain equivalents for case 7 from Chapter 4, with variations on the 
parameters: 7.1 (a), 7.2 (b), 7.3 (c), 7.4 (d), 7.5 (e), 7.6 (f), 7.7 (g), and 7.8 (h) 
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Figure A.1 (cont.) The certain equivalents for case 7 from Chapter 4, with variations on the 
parameters: 7.1 (a), 7.2 (b), 7.3 (c), 7.4 (d), 7.5 (e), 7.6 (f), 7.7 (g), and 7.8 (h) 

 

The results for case 8, with exponential time-varying risk mitigation costs and a 

quadratically increasing estimated probability of the risk event occurring, are shown in Figure 

A.2. 
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Figure A.2 The certain equivalents for case 8 from Chapter 4 with variations on th parameters: 
8.1 (a), 8.2 (b), 8.3 (c), 8.4 (d), 8.5 (e), 8.6 (f), 8.7 (g), and 8.8 (h) 
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Figure A.2 (cont.) The certain equivalents for case 8 from Chapter 4 with variations on the 
parameters: 8.1 (a), 8.2 (b), 8.3 (c), 8.4 (d), 8.5 (e), 8.6 (f), 8.7 (g), and 8.8 (h) 
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The results for case 9, as presented in Chapter 4 with exponential time-varying risk 

mitigation costs and an exponential estimated probability of the risk event, are shown in Figure 

A.3. 

 

 

Figure A.3 The certain equivalents for case 8 from Chapter 4 with variations on the parameters: 
9.1 (a), 9.2 (b), 9.3 (c), 9.4 (d), 9.5 (e), 9.6 (f), 9.7 (g), and 9.8 (h) 
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Figure A.3 (cont.) The certain equivalents for case 8 from Chapter 4 with variations on the 
parameters: 9.1 (a), 9.2 (b), 9.3 (c), 9.4 (d), 9.5 (e), 9.6 (f), 9.7 (g), and 9.8 (h) 
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