
A Cooperative Research Project sponsored by the U.S. Department of Transportation-Office of the Assistant Secretary for Research  
and Technology.
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented 
herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, b a grant from 
the U.S. Department of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no liability 
for the contents or use thereof.

Final Report
WBS: 25-1121-3002-104

Report # MATC: 104

Paula Penagos, M.S.
Graduate Research Assistant
Supply Chain & Analytics Department
University of Missouri-Saint Louis

Haitao Li, Ph.D.
Professor and Chair
Supply Chain & Analytics Department
University of Missouri-Saint Louis

A New Optimization Approach to 
Distributed Manufacturing System 
Design

2025



A New Optimization Approach to Distributed Manufacturing System Design 
 
 
 
 
Haitao Li, Ph.D. 
Professor and Chair 
Supply Chain & Analytics Department 
University of Missouri – St. Louis 
 
Paula Penagos, M.S. 
Graduate Research Assistant 
Supply Chain & Analytics Department 
University of Missouri – St. Louis 
 
 
 
 

 

 

 

 

A Report on Research Sponsored by 

 

Mid-America Transportation Center 

University of Nebraska–Lincoln 

 

 

 

 

 

March 2025  



ii 

Technical Report Documentation Page 

1. Report No. 
25-1121-3002-104 

2. Government Accession No. 
 

3. Recipient's Catalog No. 
 

4. Title and Subtitle 
A New Optimization Approach to Distributed Manufacturing System Design 

5. Report Date 
March 2025 

6. Performing Organization Code 
 

7. Author(s) 
Haitao Li ORCID No. 0000-0001-7609-2819 
Paula Penagos 

8. Performing Organization Report No. 
25-1121-3002-104 

9. Performing Organization Name and Address 
Supply Chain & Analytics Department 
College of Business Administration 
University of Missouri – St. Louis 
St. Louis, MO 63121 

10. Work Unit No. (TRAIS) 
 

11. Contract or Grant No. 
69A3552348307 

12. Sponsoring Agency Name and Address 
Office of the Assistant Secretary for Research and Technology 
1200 New Jersey Ave., SE 
Washington, D.C. 20590  

13. Type of Report and Period Covered 
June 2023 to Dec 2024 

14. Sponsoring Agency Code  
15. Supplementary Notes 
  

16. Abstract 
This project studies the supply-production-networks (SPNs) in a distributed manufacturing system (DMS) and develops a 
novel modeling framework and solution procedure for optimizing the production planning and resource allocation 
decisions in DMS, called centralized-autonomous coordination scheme (CACS). The CACS is able to coordinate the 
decisions of distributed facilities by optimizing the system-level metrics and respecting the autonomous decisions of 
individual facilities. Our approach is applied for a case study of a generic drug manufacturer implementing the new 
continuous manufacturing (CM) technology for active pharmaceutical ingredient (API) production. The results show 
significant advantages of CACS over the existing approach without centralized coordination. 

17. Key Words 
Distributed manufacturing, Optimization, Coordination, 
Production planning, Resource allocation 

18. Distribution Statement 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
123 

22. Price 
 

 

  



iii 

Table of Contents 

Disclaimer ...................................................................................................................................... vi 
Abstract ......................................................................................................................................... vii 
Executive Summary ..................................................................................................................... viii 
Chapter 1 Introduction and Background ......................................................................................... 1 

1.1 Motivation and Problem Setting ....................................................................................... 1 
1.2 Applications ...................................................................................................................... 3 
1.3 Project Overview .............................................................................................................. 4 
1.4 Main Contributions ........................................................................................................... 5 

Chapter 2 Related Literature ........................................................................................................... 6 
Chapter 3 Modeling Framework and Coordination Algorithm ...................................................... 9 

3.1 Model Formulations of Distributed Facilities ................................................................. 11 
3.2 Model Formulation of Parent Company’s Centralized Problem .................................... 13 
3.3 Centralized-Autonomous Coordination Scheme (CACS) .............................................. 15 

Chapter 4 Chapter 4 Case Study ................................................................................................... 18 
4.1 Case Description ............................................................................................................. 18 
4.2 Case Results: No Centralized Coordination ................................................................... 22 
4.3 Case Results: With CACS .............................................................................................. 25 
4.4 Case Results: With Limited Supply of Raw Material ..................................................... 31 
4.5 Discussions and Takeaways ............................................................................................ 32 

Chapter 5 Conclusions and Future Study...................................................................................... 34 
References ..................................................................................................................................... 36 
Appendix A Detailed Steps of the CACS Procedure for the Scenario with Limited KSM Supply
....................................................................................................................................................... 39 
Appendix B Python Code for the DMS-D Approach ................................................................... 46 
Appendix C Python Code for the DMS-CACS Approach............................................................ 64 
 

  



iv 

List of Figures 

Figure 3.1 A conceptual depiction of PPDM ................................................................................ 10 
Figure 3.2 Model sets and parameters .......................................................................................... 13 
Figure 3.3 Model formulation of maximization and profit with decision variables ..................... 14 
Figure 3.4 A conceptual depiction of a centralized-autonomous-coordination scheme (CACS) . 16 
Figure 3.5 A high-level flow chart of the sequential negotiation procedure in CACS ................. 17 
Figure 4.1 An example of distributed API manufacturing system ............................................... 20 
Figure 4.2 Final pure decentralized solution following A, B, C. .................................................. 23 
Figure 4.3 Facility A’s proposed plan........................................................................................... 26 
Figure 4.4 Parent company’s revised plan after Facility A submits its proposed plan ................. 27 
Figure 4.5 Facility B’s proposed plan ........................................................................................... 28 
Figure 4.6 Parent company’s revised plan after Facility B submits its proposed plan ................. 29 
Figure 4.7 Facility C’s proposed plan ........................................................................................... 30 
Figure 4.8 Parent company’s revised plan after Facility C submits its proposed plan ................. 31 
Figure A.1 Facility A’s proposed plan .......................................................................................... 39 
Figure A.2 Parent’s revised plan after Facility A submits its proposed plan ............................... 41 
Figure A.3 Facility B’s proposed plan .......................................................................................... 42 
Figure A.4 Parent’s revised plan after Facility A submits its proposed plan ............................... 43 
Figure A.5 Facility C’s proposed plan .......................................................................................... 44 
Figure A.6 Parent’s revised plan after Facility C submits its proposed plan ................................ 45 
 
 
  



v 

List of Tables 

Table 4.1 Comparison of DMS-D solutions with different orders of decision. ............................ 24 
Table 4.2 The DMS-CACS and DMS-D solutions for the case with limited KSM supply ......... 32 
 
 

  



vi 

 Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is disseminated in the 

interest of information exchange. The report is funded, partially or entirely, by a grant from the 

U.S. Department of Transportation’s University Transportation Centers Program. However, the 

U.S. Government assumes no liability for the contents or use thereof.  



vii 

 Abstract 

This project studies the supply-production-networks (SPNs) in a distributed 

manufacturing system (DMS) and develops a novel modeling framework and solution procedure 

for optimizing production planning and resource allocation decisions in the DMS, called 

centralized-autonomous coordination scheme (CACS). The CACS optimizes the system-level 

metrics and respects the autonomous decisions of distributed facilities. Our approach is applied 

to a case study of a generic drug manufacturer implementing the new continuous manufacturing 

(CM) technology for API production. The results show a significant advantage in using the 

CACS over the existing approach without centralized coordination.  
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 Executive Summary 

 Driven by fasting growing technologies such as sensors, Internet-of-Things (IoT) and 

advanced manufacturing such as 3D printing, Distributed Manufacturing (DM) is an emerging 

paradigm with some known advantages of low production cost and flexibility for small-batch 

customized products. It has various real-world applications in API manufacturing, vertical 

farming and modular construction. Effectively and efficiently managing a distributed 

manufacturing system (DMS) requires a solution that addresses the following unique features: (i) 

localized sourcing and production; (ii) autonomous decision-making; (iii) centralized 

coordination; and (iv) dynamic operations and decision-support. The goal of this project aims to 

develop a novel modeling framework and solution procedure for the design of a distributed 

manufacturing system (DMS) in terms of production and resource allocation decisions, while 

considering autonomous distributed planning decisions of supply-production networks (SPNs) in 

the DMS.  

 The technical contributions of our work include: (i) optimization models of distributed 

facilities with heterogenous and conflicting objectives; (ii) a centralized model to coordinate the 

decisions of distributed facilities by optimizing the system-level metrics and minimizing 

deviation of the facilities’ original proposed decisions; (iii) a centralized-autonomous 

coordination scheme (CACS) and a sequential negotiation procedure to implement CACS for the 

production planning and resource allocation decisions in the SPN of a DMS.  

 Our approach has been applied for a case study of a generic drug manufacturer who 

implements the new continuous manufacturing (CM) technology, which addresses the well-

known national threat of public health in the United States, who relies heavily on outsourcing 

active pharmaceutical ingredients (APIs) from other countries. This case study shows that our 

CACS solutions have clear advantages over the benchmark solutions without coordination, 
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especially for the scenario with limited supply of raw material. The CACS is able to overcome 

the challenge and deficiency caused by each individual facility making autonomous decisions 

without centralized coordination, which leads to either local optima or infeasible, unfair plans.  

 Our work provides a data-driven game-decision-theoretic solution for implementing, 

managing and scaling a DMS by optimizing the production planning and resource allocation 

decisions. This approach can be applied, adapted and extended for various applications in other 

sectors such as agriculture/food, construction, and healthcare. With the profitability gain, cost 

saving, and other improved performance metrics such as carbon emission, our solution has the 

potential to make significant impacts on economic and workforce development.  
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Chapter 1 Introduction and Background 

1.1 Motivation and Problem Setting 

Driven by fast growing technologies such as sensors, Internet-of-Things (IoT) and 

advanced manufacturing such as 3D printing, Distributed Manufacturing (DM) is an emerging 

paradigm that has been gaining traction worldwide (Srai et al., 2016). The purpose of DM is to 

allow for small-scale networks with more localized sourcing and production, such that parts, 

components, and semi-finished goods can be manufactured and assembled in a distributed and 

flexible supply chain (Roscoe & Blome, 2016; Srai et al., 2020). Rather than taking advantage of 

economies-of-scale with large plants and production batches for make-to-stock (MTS) 

manufacturing, DM motivates and facilitates customized, flexible production in small batches. 

Once properly designed and scaled, DM can be part of an industry cluster (Porter, 2000) to 

achieve both high production volume and variety, which is the main characteristic of mass 

customization (Anderson, 2008). Existing studies show that DM can deliver on-demand 

personalized consumer products, facilitate mass customization, support demands in remote 

regions, and underpin the shared and circular economy (Durach, Kurpjuweit, & Wagner, 2017; 

Ratnayake, 2019).  

While mass customization has clear advantages over traditional manufacturing paradigms 

of MTS and make-to-order (MTO), it is also well-known that mass customization can be more 

difficult and costly to manage. For instance, properly managing production planning of 

distributed facilities can be difficult when satisfying a common demand pool with limited total 

supply of parts and raw materials. There are difficulties when coordinating the operations of 

distributed facilities, i.e., production, distribution and transportation, such that demands are 

fulfilled efficiently. We also recognize the different, sometimes conflicting, objectives of 
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autonomous facilities can be difficult to reconcile while  achieving global optimal performance 

at the corporate level.  

We identify and focus on the following distinctive characteristics of a distribution 

manufacturing system (DMS) in this study. 

• Localized sourcing and production: A DMS consists of multiple small-scale supply-

production networks with shortened logistics distances compared to a regular supply 

chain network. This means it may not have the opportunity of low-cost outsourcing. 

However, a small-scale network incurs less transportation cost, has more agility when 

responding to customers, and reduces the impact of supply disruption. 

• Autonomous decision-making: Each supply-production network (SPN) in a DMS is an 

autonomous entity who makes sourcing and production decision to achieve its own 

objective, e.g., profit maximization, cost minimization, and minimization of 

environmental impact. Sometimes these objectives can be conflicting to each other. For 

example, reducing environment impact may require the use of green manufacturing or 

transportation methods, which can be costly from the profitability perspective. In 

addition, depending on the degree of autonomy, information can be asymmetric among 

the SPNs. That is, a distributed facility in one SPN may not know the market demand or 

production plan of the other distributed facility in a different SPN, or it might be costly in 

time or money to obtain such information.  

• Centralized coordination: As part of a DMS, SPNs also need to cooperate when 

fulfilling customer orders. Often, there is a parent firm who owns or manages the SPNs 

and has the authority to recommend or overwrite the production decision of an SPN. The 
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parent firm also has access to information on the SPNs including their market demand, 

resource requirements, and production decisions.  

• Dynamic operations and decision-support: Operations in a DMS are often dynamic in 

that they change and adapt over time. For example, factories can be mobile to provide 

critical operations in a production process to certain SPNs they are assigned to. An SPN 

may serve varying customer demands that change over time. Effectively and efficiently 

managing autonomous SPNs in the DMS to make dynamic decisions when there is 

uncertainty can be complex and challenging.   

1.2 Applications 

The above scenario of a DMS consisting of a parent firm and multiple autonomous SPNs 

is a common set up in multiple industries.  

• API and Generic Drug Manufacturing: The emerging advancement in flow chemistry and 

continuous manufacturing feature agile and small-batch production of active 

pharmaceutical ingredients (API; Algorri, Abernathy, Cauchon, Lamm, & Moore, 2022), 

which makes it possible to meet the point-of-care demands (Adamo et al., 2016). While 

the technology of continuous manufacturing is maturing, managing such a system for 

API manufacturing requires proper planning and coordinating distributed production 

facilities in a DMS.  

• Vertical Farming: While indoor farming, also known as vertical farming or controlled 

environment agriculture (CEA), has been gaining traction worldwide (Artemis, 2020; 

Autogrow, 2020), properly managing an indoor farming system is a non-trivial task. A 

recent study by H. Li et al. (2023) showed that indoor farming start-ups face significant 

economic challenges, despite maturing technologies in plant science and engineering for 
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CEA. The authors proposed a centralized optimization model for the design and 

operations of an indoor farming supply chain. To properly capture the autonomous nature 

of multiple indoor farming facilities in the production system requires modeling it as a 

DMS.   

• Modular Construction: Modular Construction is an alternative project paradigm to the 

traditional project management approach, where a building is constructed off-site in a 

controlled plant environment (Almashaqbeh & El-Rayes, 2021). Components of a 

building are produced in “modules”, which are then put together on site. While modular 

construction has several perceived advantages—including reduced project schedule, less 

material waste, greater flexibility and reuse, better quality control, and less environmental 

impact—its adoption and success often varies significantly by geographical locations, 

economic conditions, regulatory policies, and industry practices. This calls for new 

approaches to manage project operations at multiple off-site locations to simultaneously 

optimize the sourcing, transportation, resource allocation, and scheduling decisions.  

1.3 Project Overview 

The goal of this project is to develop a new optimization approach for the design of a 

distributed manufacturing system (DMS) in terms of production and resource allocation 

decisions, while considering autonomous distributed planning decisions of supply-production 

networks (SPNs) in the DMS. The main challenge and technical advancement of the project is 

the design and implementation of a decision-game-theoretic model to capture the autonomous 

decision-making feature of each local SPN, while achieving the optimal system-wide global 

performance. Advanced computational algorithms will also be developed to obtain quality 

solutions efficiently. This project aligns with DOT’s strategic goals of economic strength and 
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global competitiveness, safety, and supports MATS-TSE’s themes on resilient supply chains and 

transportation systems of the future. 

1.4 Main Contributions 

We design and develop a decision-game-theoretic model to optimize the following 

decisions in a DMS: (i) allocation of raw material supply to distributed facilities; (ii) production 

planning decisions of distributed facilities in the SNPs; and (iii) centralized coordination to 

achieve the system-wide global performance metrics.  

The model and solution algorithms developed in this project are applied for a real world 

case study on advanced manufacturing for generic drugs to demonstrate how our approach 

provides data-driven decision-support for the design of DMS, and the benefit of DMS compared 

to the existing approach. A case study will be conducted to examine the performance of our 

model and algorithms in different scenarios of raw material availability.  
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Chapter 2 Related Literature 

The topic of distributed manufacturing has been gaining traction. Notably, Yu et al. 

(2020) provided an updated review of distributed/shared manufacturing in the context of shared 

economy, and identified three related components: shared manufacturing service modeling, 

shared manufacturing architecture formulation, and shared manufacturing service scheduling. 

Shahmoradi-Moghadam & Schonberger (2021) studied a DMS with mobile factories shared by 

multiple production sites, and proposed a mixed-integer programming (MIP) model for the 

addressed problem. Liu, Liu, & Wei (2021) addressed the allocation of shared manufacturing 

resources and developed a bilevel programming approach to optimize flexibility at the upper 

level and quality of service at the lower level. Wang, Zhang, Guo, & Zhang (2021) developed a 

digital twin model to allocate and coordinate a shared manufacturing resource for on-demand 

customization.  

The other stream of research focuses on the design and planning of industry clusters. 

Notably, Chan, Swarnkar, & Tiwari (2007) present a conceptual framework of distributed 

artificial intelligence (AI) for information-based manufacturing. Each manufacturer is modeled 

as an agent making autonomous decisions coordinated by a centralized mechanism. Xue, Wei, & 

Liu (2012) presented a qualitative study to address the gaps in implementing cluster supply chain 

and discussed the specific conditions, advantages, and challenges in cluster supply chains. A case 

study was conducted with an emphasis on implementing service systems. J. Li et al. (2012) 

considered the design of multiple parallel supply chains in an industry cluster to allow for inter-

chain cooperation. They devised a mixed-integer nonlinear programming (MINLP) model with a 

coefficient to indicate the proportion of vertical and horizontal cooperation. A hybrid integer 

programming and genetic algorithm (GA) method was applied to solve the model. Xiang, Song, 

& Ye (2014) considered a multi-sourcing supply-demand network with suppliers in an industry 
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cluster purchasing from manufacturers outside the cluster. Heuristic demand allocation decision 

rules, namely, production capacity-based and production load-balancing, were implemented. 

Discrete event simulation was performed to evaluate the heuristic rules under uncertain demand 

and production capacity. Their approach did not model the optimization problem of each entity. 

Renna & Perrone (2015) expanded on the work of Xiang et al. (2014) to study a multi-sourcing 

supply-demand network in a dynamic setting, where the order allocation decision effects the 

long-term supply chain partnership. A simulation was employed to evaluate the capacity-based 

and production load-based allocation strategies under different market conditions.  

 Yan & Liu (2018) studied the cluster supply chain where entities in an industry cluster 

formed a supply chain such that there exist both cooperation and competition among the entities. 

They proposed a decision rule for transshipment based on system dynamics, which is shown to 

improve the customer satisfaction level and reduce inventory compared to the two benchmark 

approaches. Haque, Paul, Sarker, & Essam (2020) studied a multi-tier supply chain with 

decentralized entities of manufacturers, distributors, and retailers who make autonomous 

decisions. To address the asymmetric information between decentralized entities, a bilevel 

modeling framework was developed with the upper-level problem aiming to coordinate the 

decentralized decisions at the lower-level via Nash equilibrium.  

None of the studies addressed the situation of asymmetric information among SPNs, nor 

the different objectives of distributed facilities. A related topic on designing a complex products 

or systems while considering different design needs with heterogeneous objectives/metrics and 

requirements has been extensively studied through the so-called Analytical Target Cascading 

(ATC) Optimal System Design approach. The seminal work of Kim (2001) proposes the 

methodology of target cascading for hierarchical multilevel system design and multidisciplinary 
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design optimization (MDO), where multiple teams participate in the design of a system with 

multiple modules or subsystems with different performance metrics (targets) to meet and 

different constraints (requirements) to satisfy. Kim, Michelena, Papalambros, & Jiang (2003) 

present a case study of automobile chassis design. An application of target cascading for vehicle 

design is presented by Kim et al. (2002). Other works in this line of research include an 

augmented Lagrangian relaxation method to improve the nested iterative procedure of ATC 

(Tosserams, Etman, Papalambros, & Rooda, 2006), a coordination approach for ATC with 

linking variables as well as coupling objectives and constraints (Tosserams, Etman, & Rooda, 

2008), and an empirical study of the convergence behavior of augmented Lagrangian 

coordination for solving multi-modal optimization problems in a distributed fashion (Tosserams, 

Etman, & Rooda, 2010). However, none of these works address the unique characteristics and 

decision needs in a DMS.  

Our review of the related literature shows that although there is existing research on 

industry cluster design and multidisciplinary design optimization, there has been little work 

addressing the design of distributed manufacturing system.  
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Chapter 3 Modeling Framework and Coordination Algorithm 

Consider a distributed manufacturing system (DMS) consisting of multiple flexible and 

small-scale manufacturing facilities owned by one parent company. Each facility plans for its 

own production and distribution to meet the demands of multiple customers though its own 

supply-production network (SPN). The parent company would like to optimally allocate and 

centralize the limited raw materials and supplies, while allowing each manufacturing facility to 

make its planning decision autonomously. We name the addressed problem Production Planning 

for Distributed Manufacturing (PPDM).  

The PPDM is conceptually described in Figure 3.1. The parent company H owns three 

distributed manufacturing facilities—A, B, and C—to serve seven customers, which form a 

DMS. Each facility operates its own SPN. In Facility A’s SPN, A receives a raw material supply 

from H, plans for its production to serve the demand of Customers 1, 2, and 3, with an objective 

of maximizing profit; Facility B also receives supply from H and serves Customers 2, 3, 4, and 5 

to maximize its market share of Customers 2 and 3 among its entire customer pool of 2, 3, 4, and 

5; Facility C’s supply of raw material also comes from H, and it serves Customers 4, 5, 6, and 7 

with an objective of minimizing carbon dioxide emission. There is a limited supply of raw 

materials from H which is shared among the three facilities. The parent company H would like to 

properly allocate the limited raw material supply and to coordinate distributed facilities’ 

production for demand fulfillment, while optimizing the system-wide performance metric(s).  

To capture an authentic decision environment and process, we make the following two 

assumptions.  

Assumption 1: Production decisions of distributed facilities are made in a certain order, which 

may be predetermined by the decision-maker.   
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Assumption 2: Distributed facilities have asymmetric information about market demand, 

available raw material supply and other facilities’ objectives. 

 

 

Figure 3.1 A conceptual depiction of PPDM 

 

The most distinctive and unique feature of PPDM is that planning decisions are made in a 

distributed way by autonomous manufacturing facilities, which is coordinated by a centralized 

decision-maker. The relationship among the distributed manufacturing facilities is called 

“coopetitive”. As shown in Figure 3.4, on one hand, the distributed facilities compete for a 

limited supply of raw materials; on the other hand, they cooperate to fulfill demand. The 

cooperation is also made possible by the centralized intervention and coordination of the parent 

company.  

Our main technical development in this project is the design of a new modeling 

framework and algorithm to coordinate autonomous SPNs to achieve system-wide optimal 

performance.  
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3.1 Model Formulations of Distributed Facilities 

In this section, we present the model formulation for the distributed facilities. It includes 

the following sets and parameters. 

Sets 

H: one parent company 

F: set of facilities 

C: set of customers  

P: set of products 

Parameters 

Kh: raw material availability at parent h ∈ H 

κpf : manufacturing capacity of product p ∈ P at facility f ∈ F 

dpc: demand of product p ∈ P by customer c ∈ C 

cpf : cost of manufacturing product p ∈ P at facility f ∈ F αp: KgCO2 emission per unit of product 

p ∈ P 

πp: unit of revenue of product p ∈ P 

rp: units of raw material needed to manufacture product p ∈ P 

The following decision variables are defined. 

Xpfc ⩾ 0: units of product p ∈ P served to customer c ∈ C by facility f ∈ F 

Yf ⩾ 0: units of raw material allocated to facility f ∈ F 

Facility A solves the profit maximization problem with the equations below. 𝑋𝑋�𝑝𝑝𝑝𝑝𝑝𝑝 

denotes the production decision of other facilities, i.e., 𝑓𝑓 ∈ {𝐵𝐵,𝐶𝐶} The first constraint satisfies 

the demand of product 𝑝𝑝 at customer 𝑐𝑐, given the production from other facilities. The second 
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constraint ensures that the total required raw material does not exceed 𝑌𝑌𝐴𝐴, determined by the 

parent company. The third constraint satisfies the available capacity at facility A.  

 

 

 

Facility B maximizes its market share for all products and customers. The first constraint 

satisfies the demand of product 𝑝𝑝 at customer 𝑐𝑐, given the production from other facilities. The 

second constraint ensures that the total required raw material does not exceed 𝑌𝑌𝐵𝐵, determined by 

the parent company. The third constraint satisfies the available capacity at facility B.  

 

 

 

Facility C minimizes the total cost of its carbon emissions. The first constraint satisfies 

the demand of product 𝑝𝑝 at customer 𝑐𝑐, given the production from other facilities. The second 
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constraint ensures that the total required raw material does not exceed 𝑌𝑌𝐶𝐶, determined by the 

parent company. The third constraint satisfies the available capacity at facility C.  

3.2 Model Formulation of Parent Company’s Centralized Problem 

We develop a model for the parent company’s centralized problem to optimize the 

system-wide performance metrics, taking distributed facilities’ decisions as inputs. The parent 

would also minimize the deviation of its recommendation from a facility’s decision. The 

following sets and parameters are defined for the model.  

 

 

Figure 3.2 Model sets and parameters 

 

The parent company’s centralized model formulation can be written as: 
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Figure 3.3 Model formulation of maximization and profit with decision variables 

 

The parent company determines how much products from each distributed facility go to 

serve customers (𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝) and the corresponding amount of raw materials allocated to each facility 

(𝑌𝑌𝑓𝑓), which will potentially deviate from the decision made by a facility (priori). A decision 

variable 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓 is defined to capture the absolute deviation of the raw materials allocated by the 
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parent company from the amount requested by a facility. Another auxiliary decision variable 𝐷𝐷𝑝𝑝𝑝𝑝 

is defined to quantify the absolute deviation of products sent to customers from the actual 

demand, since it is undesirable to have either an unfulfilled demand gap or an over-fulfillment 

surplus.  

The parent company’s objective function maximizes the system-wide total profitability of 

all distributed facilities for all products. The first triple-summation term computes the total profit 

as the total revenue subtracting costs of raw materials, production, and carbon dioxide emissions. 

The next term penalizes the absolute deviation from a facility’s request of raw materials. The last 

term penalizes the absolute deviation from the actual demand.  

The first constraint ensures that the production of all products at each distributed facility 

does not require more than the amount of raw materials allocated to the facility. The second 

constraint guarantees that the production of all products at each facility does not exceed the 

maximum production capacity of the facility. The third constraint limits the total allocated raw 

materials not to exceed the maximum availability from the parent company. The fourth and fifth 

constraints together compute the absolute value of deviation of raw material allocated to each 

facility from the facility’s requested raw material amount. Note that some decision variables 

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 are fixed as constants, denoted as 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝������, for those facilities that have already made their 

production decisions. The last two constraints calculate the absolute value of the deviation of 

product quantity sent to customers from the actual demand.  

3.3 Centralized-Autonomous Coordination Scheme (CACS) 

The parent company aims to coordinate the production of distributed facilities. The 

objective function of the parent company optimizes the global performance of the DMS, which 

includes the objective of all the distributed facilities, plus an additional term to minimize the 
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deviation of the parent firm’s coordination decision from a facility’s proposed decision. In this 

way, the parent firm is able to optimize the global performance metric of the entire DMS, while 

respecting each distributed facility’s decision.  

In this section, we present a centralized-autonomous coordination scheme (CACS) for the 

DMS as shown in Figure 3.4.  

 

 

Figure 3.4 A conceptual depiction of a centralized-autonomous-coordination scheme (CACS) 

 

The main features of CACS include: (1) Asymmetric Information: We consider a realistic 

situation where the information about each facility’s objective function and the available 

resource is “asymmetric” among the distributed facilities, which is a key characteristic of 

autonomous facilities in the DMS; (2) Iterative Process: Following a certain order of distributed 

facilities, one facility makes a production planning decision and submits its proposal to the 

parent firm. Then the parent firm makes its global decision and adjusts the available resource for 

the next facility’s decision in the iterative process. A flow chart of the iterative sequential 

negotiation procedure in the CACS is presented in Figure 3.5; (3) Global Metrics vs 
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Autonomous Decisions: The parent firm optimizes the global performance metrics while 

observing and respecting each distributed facility’s autonomous decision. This is achieved by 

minimizing the deviation of parent firm’s recommendation from a facility’s decision.  

 

 

Figure 3.5 A high-level flow chart of the sequential negotiation procedure in CACS 
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Chapter 4 Chapter 4 Case Study 

4.1 Case Description 

The US is heavily reliant on other countries, particularly India and China, for the 

production of critical active pharmaceutical ingredients (APIs) and related starting materials. The 

nation’s over-reliance on offshore pharmaceutical manufacturing poses significant threats to 

public health and national security as millions of Americans rely on undisrupted access to safe 

pharmaceuticals. 

Less than 5% of large-scale global API sites are in the US; the majority of large-scale 

manufacturing sites are in China and India. The latest Drug Shortages: Root Causes and 

Potential Solutions: A Report by the Drug Shortages Task Force, issued in 2020 by the FDA, 

noted that 88% of the manufacturing sites for the US market’s APIs were located outside the US 

in 2018. 

The COVID-19 pandemic, the shifting geopolitical landscape, and extreme weather 

events have all exposed how reliance on outside-the-US (OUS) manufacturing of our essential 

and critical medicines has put the US pharmaceutical supply chain at risk. The majority of our 

nation’s APIs are sourced from manufacturers located outside of the United States, which has 

created both public health and a national security risks. A September 2022 evaluation of the US 

pharmaceutical supply report by the Department of Defense Office of Inspector General 

concluded “reliance on foreign suppliers for pharmaceuticals is a public health, readiness and 

national security risk.” 

The application of new, continuous manufacturing (CM) into existing facilities offers a 

promising path to build resiliency (Domokos, Nagy, Szilagyi, Marosi, & Nagy, 2021; Aulakh, 

Settanni, & Srai, 2021). By condensing processes that used to take months of expensive work 

into a few days, the Cost of Goods Sold (COGS) can be reduced by as much as 30-50%. It also 
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promotes the use of automation to shrink labor costs while improving quality controls to 

minimize waste. Industry 4.0 proponents believe that automation of traditional manufacturing 

processes can make these gains even greater when the right technologies extend across the 

supply chain. 

In addition to being less expensive, new technology such as continuous manufacturing 

can expedite regulatory checks without compromising oversight, improve manufacturing agility, 

and cause less of an environmental impact. The FDA also recognizes that the adoption of 

advanced manufacturing techniques would reduce costs and increase the resilience of US 

production, enabling a competitive advantage to ensure a stable supply of critical drugs. The 

placement of new, advanced technologies in idled sites would boost production, build emergency 

capacity, and help minimize the risk for existing manufacturers to upgrade equipment and 

expand production lines. Advanced manufacturing also creates new opportunities to develop a 

trained workforce through hands-on experience, with outreach concentrated in communities of 

color, to develop critical, transferable skills within the pharmaceutical supply chain. 

Consider generic drug manufacturer ℋ who is part of the initiative to bring active 

pharmaceutical ingredients (API) manufacturing to the U.S. ℋ has equipment for the new 

production technology known as continuous manufacturing (Domokos et al., 2021; Aulakh et al., 

2021). Continuous manufacturing (CM) features a new and flexible production paradigm, which 

can be operated in a distributed system with small batches, rather than the traditional API 

manufacturing process with discrete operations in large batches at one facility to achieve 

economies-of-scale. In this numerical example, ℋ operates three distributed facilities A, B and C 

to serve seven customers. Facility A has an objective of maximizing profit. Facility B’s objective 

is to maximize market share of Customers 2 and 3 among its customer pool of 2, 3, 4, 5. Facility 
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C’s objective is to minimize carbon dioxide emission. There is a limited supply of raw materials 

that is shared among the three facilities. The distributed manufacturing system for APIs can be 

depicted by Figure 4.1.  

 

 

 

Figure 4.1 An example of distributed API manufacturing system 

 

Without loss of generality, we assume the following input data in the case study: 

• The total available supply of key starting materials (KSM) from ℋ is 100 kgs. 

• Assume that producing 1 kg of API requires 0.8 kgs of KSM.  

• The production capacities (in kgs) at distributed facilities A, B, and C are 500, 100 and 

100, respectively.  

• The production costs ($/kg) at distributed facilities A, B, and C are 1, 0.5, and 0.8, 

respectively.  
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• The demands (in kg) at markets 1 – 9 are 10, 5, 20, 25, 5, 20, 15, respectively.  

• The market price ($/kg) of the API is 5. 

• The cost of carbon emission is $0.5 per kg of API production. 

Although the distributed API manufacturing system enabled by the advanced CM 

technology has multiple perceived advantages over the traditional paradigm, the Senior VP of 

Operations and Supply Chain realizes there are several challenges in managing the new 

production and supply chain system: 

• While distributed CM facilities has the capability and flexibility of meeting local 

demands, the API manufacturer ℋ as the parent company would like to have certain 

centralized control to ensure company-wide global performance metrics are achieved. 

• Distributed facilities have asymmetric information, meaning that they do not know each 

other’s information about the corresponding local demands, cost of production, or 

objective metric.  

• Newly established CM facilities operate along with other existing production facilities 

(rather than replacing them), which may have different and conflicting individual 

objective metrics to optimize.  

To address these challenges and decision needs, the Senior VP calls for a team consisting 

of professionals in optimization modeling and subject matter experts for the company’s 

purchasing, production and operations, to work on a solution. The team is charged to: 

• Develop a data-driven decision-support solution to plan for the production and allocation 

of raw materials of KSM. 
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• The solution must allow each distributed facility to make their autonomous decisions 

under asymmetric information, while achieving the company-wide global performance 

metrics. 

• Compare the new solution with the status quo approach and assess its performance. The 

company’s existing approach asks each distributed facility to come up with their own 

production plan without any intervention or coordination.  

4.2 Case Results: No Centralized Coordination 

Without intervention or coordination, the company currently implements a simple 

approach where all the distributed facilities make their own decisions for a given order, which 

we call DMS-D for DMS-Decentralized. In this approach, the parent company only serves as a 

supplier of raw materials and does not intervene in the decision process, e.g., how resources are 

allocated to the distributed facilities. 

Assuming the order of decisions is A,B, then C. Using the case study data, the procedure 

starts with Facility A making its own production decision first, operating independently without 

considering the actions or needs of Facility B or Facility C. Facility A determines to fully fulfill 

the demand of Customers 1, 2, and 3, while maximizing its own profit by using 28 units of the 

total available 100 units of raw material with an optimal objective function value of 140. This 

reduces the raw material available to 72 units, and some of the shared customer pool has already 

been satisfied.  

Next, Facility B makes its own production decision with 72 units of raw material 

available, and Customers 2 and 3 already being fulfilled by Facility A. Given these constraints, 

Facility B determines to fulfill the demands of Customers 4 and 5 by requesting 24 units of raw 

material to maximize its market share for Customer 3. Recall that Customer 3 has already been 
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fulfilled by Facility A, thus Facility B must focus on other demands in its customer pool, 

although this is not ideal from Facility B’s perspective. As a result, Facility B achieves an 

objective function value of 30, a lower value than if it was able to make the first decision and a 

reflection of how Facility B’s performance is affected by Facility A’s prior decision.  

With Facilities A and B having completed their decisions, Facility C now proceeds with 

its production planning. At this point, only 48 units of raw material remain available, and 

Customers 4 and 5 have already been fully served by Facility B. Given these conditions 

(constraints), Facility C fulfills the demands of the remaining Customers 6 and 7, with an 

objective value of 17.5. 

This decision by Facility C concludes the pure decentralized decision-making process for 

the DMS, with the final solution shown in Figure 4.2. 

 

 

Figure 4.2 Final pure decentralized solution following A, B, C. 
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In this case, facilities earlier in the sequential decision process have the advantage in 

achieving the objective, creating intrinsic unfairness and lack of mechanism to achieve the global 

system-level performance.  

We further examine two other orders of decision: B, A, C and C, B, A. Table 4.1 

compares the complete results of the three orders in three performance metrics: profitability, 

market share, and carbon emission, both individually and globally. The bold numbers in the table 

indicate the best performance metric for the corresponding individual facility or global level.  

 

Table 4.1 Comparison of DMS-D solutions with different orders of decision. 

Performance Metrics A->B->C B->A->C C->B->A 

Profitability 

A 140 40 40 
B 247.5 247.5 112.5 
C 273 147 273 
Global 660.5 434.5 425.5 

Market 
Share 

A 80 0 0 
B 90 90 90 
C 0 0 0 
Global 170 90 90 

Carbon 
Emissions 

A 17.5 5 5 
B 27.5 27.5 12.5 
C 16.25 8.75 16.25 
Global 61.25 41.25 33.75 

 

The above results show that since there is no centralized coordination, the order for 

distributed facilities to make decision has significant effect on the performance of individual 

facilities and the overall system. Specifically, Facility A achieves most profitability when the 

order is A, B, C; Facility B is indifferent of the order for maximizing its market share; and the 

order B, A, C allows Facility C to achieve lowest carbon emissions (while sacrificing the other 

two metrics). For the overall system performance, the order of A, B, C generates the best 
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profitability and market share, but also has the highest carbon emissions. The lowest carbon 

emissions of the system are achieved with the order B, A, C.  

Because each facility prioritizes its individual objectives—profit maximization for A, 

market share for B, and carbon emission reduction for C—it is often not possible for the system 

to achieve optimal global performance. This independent decision-making approach, without 

coordination, gives advantage to whoever makes the first move in the decision process, causing 

competition among distributed facilities with no cooperation. It misses the opportunity of better 

utilizing the limited resources and aligning facilities’ metrics with the company’s global 

objective. 

4.3 Case Results: With CACS 

The research team implements the sequential negotiation procedure in the centralized-

autonomous-coordination scheme (CACS) in Figure 3.5 for the case study, which is called DMS-

CACS in the sequel. In this approach, the parent company actively participates in the decision 

process by revising and adjusting the production plan of a facility after it submits its proposed 

decision to the parent company. The parent’s goal is to: (i) coordinate distributed facilities’ 

decisions to achieve better system-wide global performance; and (ii) respect each facility’s 

decision by minimizing the deviation of the revised plan from the facility’s proposed plan.  

The DMS-CACS solutions have the following main features.  

• System Approach: All decisions are evaluated and adjusted by the parent company to 

address the overall system-wide performance to better align distributed facilities’ metrics 

with the corporate-level objective. 

• Sequential Coordination: After each facility independently optimizes its production, the 

parent company reviews and revises the plan to align with the global objective while 
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minimizing the deviation from the facility’s proposed decision. This achieves a better 

balance between the local and global objectives.  

• Progressive Symmetric Information: As a facility’s decision is reviewed and updated, 

other facilities gradually gain more information, leading to more informed and 

coordinated decisions. 

The DMS-CACS solutions have the potential of enhancing coordination, reducing 

inefficiencies, and driving optimal global performance of the DMS. The detailed steps of DMS-

CACS—assuming the order A, B, C—for the case study are elaborated below.  

Step 1. Facility A begins by independently optimizing its production plan with the objective of 

maximizing its local profit. In doing so, Facility A requests 28 units of raw material from the 

parent company (H) and fully satisfies the demands of Customers 1, 2, and 3. This decision 

results in an objective function value of 140, which matches the outcome in the decentralized 

solution as shown in Figure 4.3. 

 

 

Figure 4.3 Facility A’s proposed plan  
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Step 1R. The parent company reviews Facility A’s proposed plan and solves the parent’s 

centralized model in Section 3.2. As shown in Figure 4.4, in the parent company’s revised plan, 

Facility A is assigned to serve Customers 1 and 3. Facility A’s raw material allocation is reduced 

by four units (from 28 to 24), and the parent company allocates the total supply to optimize the 

decisions of the subsequent facilities. Facility B is now allocated 28 units of raw material, which 

allows it to fulfill the demands of Customers 2, 4, and 5. Facility C is allocated 28 units of raw 

material.  

 

 

Figure 4.4 Parent company’s revised plan after Facility A submits its proposed plan 

 

Step 2. Facility B proceeds to make its independent production decision based on the updated 

conditions prescribed by the parent company’s revision of Facility A’s plan. Recall that the 

parent company has already allocated 28 units of raw material to Facility A and reassigned 

customer responsibilities, leaving Facility B with a maximum of 28 units of raw material. 



28 

 

Considering this constraint and the fact that Facility A has already fulfilled the demands of 

Customers 1 and 3, Facility B optimizes its production to focus on serving Customers 2, 4, and 5. 

To achieve this, Facility B utilizes all the raw material available (28 units available) for its 

production, resulting in an objective function value of 35. Facility B’s proposed plan is shown in 

Figure 4.5.  

 

 

Figure 4.5 Facility B’s proposed plan 

 

Step 2R. After Facility B submits its proposed production plan: requesting 24 units of the 

available 28 units of raw material to fulfill Customers 2, 4, and 5, the parent company intervenes 

to revise B’s proposal. Notably, the parent company has significantly revised B’s proposal to 

allocate more raw material to B and allow it to produce more to serve Customers 2 and 3 (in 

addition to Customers 4 and 5 in B’s original proposal), which takes advantage of B’s lowest 

production cost among the three distributed facilities in the case study. The parent also updates 

the raw material availability for Facility C to be 28. Figure 4.6 shows the parent company’s 

revision of Facility B’s proposal.  
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Figure 4.6 Parent company’s revised plan after Facility B submits its proposed plan 

 

Step 3. Facility C proceeds with its production decision, serving the set of customers prescribed 

by the parent’s revision on the proposals of Facilities A and B. With 28 units of raw material 

available, Facility C utilizes all of it to fulfill the demand for Customers 6 and 7 exclusively, as 

shown in Figure 4.7. The orange numbers in the diagram indicate the adjustments made by the 

parent during its revision process, ensuring that resources are efficiently distributed and customer 

demands are met without duplication. 
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Figure 4.7 Facility C’s proposed plan 

 

At this point, all the distributed facilities have completed their production proposals, and 

all the customer demands are satisfied. The parent company will do a last round of revision.  

Step 3R. In the final stage of the centralized decision process, the parent company performs a 

comprehensive revision of all facilities' production proposals. By this point, the parent company 

has gathered complete and symmetric information from each facility, enabling it to make 

informed and optimal decisions. As in Figure 4.8, the final allocation of resources, highlighted in 

the orange numbers, shows how the parent company strategically redistributes production 

responsibilities. This redistribution eliminates redundancies, aligns local facility decisions with 

system-wide objectives, and maximizes the overall performance. 



31 

 

 

Figure 4.8 Parent company’s revised plan after Facility C submits its proposed plan 

 

The final DMS-CACS solution has a global objective of 294.5, which outperforms the 

global objective of 292 in the DMS-D solution (using the same objective function in the parent 

company’s centralized model).  

4.4 Case Results: With Limited Supply of Raw Material 

The above scenario in the case study assumes ample capacity of raw material, i.e., key 

starting materials (KSMs). In real world operations, the capacity of KSM supply of the parent 

company is often limited. Comparison of DMS-CACS and DMS-D solutions in this case is 

provided in Table 4.2, assuming the total supply of KMS at the parent company is only 70 kgs. 

Detailed solution steps for this scenario are provided in Appendix A. 
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Table 4.2 The DMS-CACS and DMS-D solutions for the case with limited KSM supply 

 

 

Note that the DMS-D approach without centralized coordination has difficulty coming up 

with feasible solutions for every distributed facility. This is not surprising because the supply can 

be depleted before the facilities that are last in order can make their decision, which creates 

infeasible or unrealistic production plans, unfairness, and misses the opportunity of achieving 

optimal global performance. A DMS with limited supply highlights the need for innovative and 

intelligent solutions, such as our CACS developed in this project, for effectively managing DMS.          

4.5 Discussions and Takeaways 

Our case study of a generic drug manufacturer with distributed CM facilities shows the 

benefit of using CACS for production planning in a DMS. It overcomes the challenge and 

deficiency caused by each individual facility making autonomous decisions, which leads to 

either local optima or infeasible, unfair plans. By properly formulating the optimization model of 

the parent company’s centralized problem in Section 3.2, and following the sequential 

negotiation procedure to implement the CACS as in Figure 3.3, our DMS-CACS solutions are 

able to better allocate the limited supply of raw material, better prescribe and coordinate each 
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distributed facility’s decision, and improves the system-wide global performance over the 

benchmark DMS-D solutions.   
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Chapter 5 Conclusions and Future Study 

In this project, we have identified and defined an optimization problem to facilitate and 

take advantage of distributed manufacturing systems (DMSs) made possible by advancement in 

manufacturing and information technologies. The DMS has its unique features of localized 

sourcing and production, autonomous decision-making, and the need for centralized coordination 

and dynamic decision-support, with diverse applications including API manufacturing, vertical 

farming, and modular construction.  

Our study focuses on the resource allocation and production planning decisions in a 

supply-production network (SPN) of a DMS, where multiple distributed facilities make their 

autonomous production decisions with their own (and sometimes conflicting) objectives, and a 

parent company allocates the supply need for production. The parent company has full visibility 

and access to all the facilities’ information and data, but such information is asymmetric across 

distributed facilities. The parent company would like to coordinate the facilities’ decisions in a 

centralized way to optimize the system-wide global performance metric(s), while respecting each 

individual facility’s autonomous decision.  

We first build an optimization model for the parent company’s centralized problem, 

which takes the resource allocation, global performance metrics, along with each distributed 

facility’s proposed production plan, into consideration. We then propose a novel centralized-

autonomous coordination scheme (CACS) and a sequential negotiation procedure to implement 

CACS for the production planning and resource allocation decisions in the SPN of a DMS. Our 

approach iteratively allows each distributed facility to make its own production decision and to 

submit its proposal to the parent company. In each iteration, the parent company reviews the 

newly submitted proposal of a facility and revises it by solving the centralized coordination 

model. The approach handles asymmetric information among distributed facilities, a typical 
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situation in DMSs. It is also able to optimize the global performance metrics while respecting 

each distributed facility’s autonomous decision.  

A case study of API manufacturing using the new continuous manufacturing (CM) is 

performed to examine and assess the performance of our CACS approach, compared to the 

simple status quo approach without coordination. The results show that our CACS solutions have 

clear advantages over the benchmark solutions without coordination, especially for the scenario 

with limited supply of raw material. The CACS is able to overcome the challenge and deficiency 

caused by each individual facility making autonomous decisions, which leads to either local 

optima or infeasible, unfair plans.  

Our work opens the door to future research opportunities. First, the basic CACS and 

sequential negotiation procedure can be improved to address production planning and resource 

decisions in multiple time periods, which explicitly handles the need for dynamic decision-

support. Secondly, the SPN considered in this study can be extended to a more general supply 

chain network with multiple tiers and larger number of facilities and players. Last but not least, it 

will be fruitful to apply our modeling framework and CACS procedure for real world 

applications in other various sectors including manufacturing, agriculture/food, construction, and 

healthcare.  
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Appendix A Detailed Steps of the CACS Procedure for the Scenario with Limited KSM Supply 

As shown in Figure A.1, Facility A begins by autonomously optimizing its production 

plan with the objective of maximizing its own profit. It requests 28 units of raw material from the 

parent company (H) and fully satisfies the demands of Customers 1, 2, and 3. This decision 

results in an objective function value of 140, which matches the outcome in the decentralized 

process. Since Facility A is the first facility to make its decision, its plan remains unaffected by 

the actions of the other facilities. 

 

 

Figure A.1 Facility A’s proposed plan  

 

The parent company then reallocates customer fulfillment responsibilities as shown in 

Figure A.2. Facility A is now assigned to only serve Customer 3. Facility A’s raw material 

allocation decreases to 14 units, but the parent company adjusts the remaining supply to optimize 

the decisions of the subsequent facilities. Facility B now has 28 units of raw material available, 

which allows it to fulfill the demands of Customers 2, 4, and 5. This facility also partially fulfills 
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the remaining demand of Customer 3. Facility B is prioritized, possibly due to the high relevance 

its production has on the global profit. Facility B is the least expensive in manufacturing and the 

one with the largest customer base. Facility C is left with 28 units of raw material. 

Note that due to the raw material shortage, Customer 1 remains unserved, while 

Customer 2 is only partially served by Facility B. This outcome may be driven by Facility A’s 

relatively lower profitability within the system, making it less favorable in the centralized 

allocation process. Additionally, since the model penalizes demand gaps, these two customers 

contribute to lower penalty costs compared to others with higher demand. As a result, the system 

prioritizes fulfilling higher-demand customers first, even if it leads to partial or unmet fulfillment 

for smaller-demand customers. 

This revision directly constrains and influences the production decisions of Facilities B 

and C, guiding them toward solutions that contribute to system-wide optimization. Through this 

step-by-step revision, the parent company ensures that local facility objectives align with the 

overarching goals of the entire manufacturing network. 
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Figure A.2 Parent’s revised plan after Facility A submits its proposed plan 

 

Facility B now proceeds to make its autonomous production decision based on the 

updated conditions set by the parent company’s prior revision of Facility A’s plan, as shown in 

Figure A.3. The parent company has already allocated 14 units of raw material to Facility A and 

reassigned customer responsibilities, leaving Facility B with a maximum of 28 units of raw 

material. Considering this constraint and the fact that Facility A has partially fulfilled the 

demands of Customer 3, Facility B optimizes its production to focus on serving Customers 2, 4, 

and 5. Facility B can also partially fulfill the unmet demand of Customer 3. To meet this 

demand, Facility B requests 28 units of raw material for its production, resulting in an objective 

function value of 40. 
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Figure A.3 Facility B’s proposed plan  

 

After Facility B submits its proposal: requesting 28 units of raw material to fulfill 

Customers 2, 3, 4, and 5, the parent company steps in to revise this proposal as shown in Figure 

A.4. At this point, the parent company holds the updated information from both Facility A and 

Facility B, allowing it to make more informed adjustments to align with system-wide objectives. 

Customers 2 and 6 remain partially unfulfilled because they are served by the most expensive 

facilities in the system (A and C). Since Facility B, the most cost-efficient facility, was 

prioritized in allocation, it received enough raw materials to fully meet the demands of 

Customers 3, 4, and 5. Given the supply constraints, the parent company prioritized fulfilling 

high-demand customers while minimizing cost inefficiencies. As a result, lower-priority demand 

from Customers 2 and 6 was left partially unfulfilled due to the limited raw materials available 

for Facilities A and C. The revision also updates the raw material availability for Facility C, 

leaving it with only 18 units due to the adjustments made for Facilities A and B. These changes 

will directly influence how Facility C approaches its production planning. By revising Facility 
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B’s plan, the parent company ensures that each facility’s operations contribute more effectively 

to system-wide goals, such as maximizing profit, minimizing carbon emissions, and reducing 

allocation deviations. This sequential adjustment process fosters a more balanced and optimized 

production strategy before Facility C proceeds with its decision-making. 

 

 

Figure A.4 Parent’s revised plan after Facility A submits its proposed plan 

 

Facility C then proceeds with its production decision, operating under the constraints set 

by the parent company after revising Facilities A and B as shown in Figure A.5. With only 18 

units of raw material available, Facility C utilizes all of it to fulfill the demand for Customers 6 

and 7 exclusively. However, demand for Customer 6 is only partially fulfilled. This allocation 

aligns with the parent company’s system-wide optimization strategy after the last revision. The 

orange numbers in the diagram indicate the adjustments made by the parent during its revision 

process, ensuring that resources are efficiently distributed, and customer demands are met 

without duplication. 
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Figure A.5 Facility C’s proposed plan 

 

In the final stage of the centralized decision process, the parent company performs a 

thorough revision of all facilities’ production plans. By this point, the parent company has 

gathered complete and symmetric information from each facility, enabling it to make informed 

and optimal decisions. As shown in Figure A.6, the final allocation of resources, highlighted in 

the orange numbers, shows how the parent company strategically redistributed production 

responsibilities. This redistribution eliminates redundancies, aligns local facility decisions with 

system-wide objectives, and maximizes overall performance while trying to better serve 

customers during a raw material supply shortage. 

In this case, the parent company has distributed raw material equally among the three 

facilities: A, B, and C, each receiving 23.3 units. As a result, Customers 4 and 7 remain 

unfulfilled while other demands are met, due to a limited supply of raw material. The final round 

of solutions after the parent company revision prescribes the best way to both allocate the limited 

raw material supply and to determine which customers’ demand to fulfill (and which to give up), 

while achieving the optimal global performance. 
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It is also interesting to note that a customer’s demand can now be fulfilled by multiple 

distributed facilities, i.e., multiple sourcing. For example, Customer 3’s total demand of 30 is 

met by both Facility A (14.2) and Facility B (5.8), which is also due to the limited total raw 

material capacity, such that there might exist some customer(s) whose demand cannot be 

fulfilled by a single facility (single sourcing).  

 

 

Figure A.6 Parent’s revised plan after Facility C submits its proposed plan 
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Appendix B Python Code for the DMS-D Approach 

# -*- coding: utf-8 -*- 

import xlrd 

import gurobipy as gp 

from gurobipy import GRB 

# %% Load the workbook, and map sheets to variables 

dataset = r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li - Distributed 

Manufacturing\Code\PPMM - Small example - Paula Penagos.xls" 

datafile = xlrd.open_workbook(dataset) 

SetSheet = datafile.sheet_by_name("Sets") 

FacCoverage = datafile.sheet_by_name("Facilities coverage") 

RawAvail = datafile.sheet_by_name("Raw material avail.") 

ManufCap = datafile.sheet_by_name("Manufacturing cap.") 

Demand = datafile.sheet_by_name("Demand") 

ManufCost = datafile.sheet_by_name("Cost of manufacturing")  

Demand = datafile.sheet_by_name("Demand") 

Costs = datafile.sheet_by_name("Costs") 

# %% %Sets 

parents = [] 

facilities = [] 

customers = [] 

products = [] 

nParent = 1 

nFacilities = 3 

nCustomers = 7 

nProducts = 1 

 

i=1 
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while (i < nParent +1): 

    try: 

        parent = SetSheet.cell_value(0,i).strip() 

        parents.append(parent) 

        i=i+1 

    except IndexError: 

        break 

print("Set of parent companies: ", parents) 

i=1 

while (i < nFacilities +1): 

    try: 

        facility = SetSheet.cell_value(1,i).strip() 

        facilities.append(facility) 

        i=i+1 

    except IndexError: 

        break 

print("Set of manufacuring facilities: ", facilities) 

i=1 

while (i < nCustomers +1): 

    try: 

        customer = int(SetSheet.cell_value(2,i)) 

        customers.append(customer) 

        i=i+1 

    except IndexError:   

        break 

print("Set of customers: ", customers) 

i=1 

while (i < nProducts +1): 
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    try: 

        product = SetSheet.cell_value(3,i).strip() 

        products.append(product) 

        i=i+1 

    except IndexError: 

        break 

print("Set of products: ", products) 

# %% Parameters 

cust_served = {} 

raw_available = {} 

manuf_cap = {} 

demand_cust = {} 

# manuf_cost = 1 #if it is constant 

revenue = 5 

cost_emission = 0.5 

cost_emission_reduced = 0.25 

raw_need = 0.8 

i = 1 

for customer in customers : 

    j = 1 

    for facility in facilities : 

        cust_served[customer, facility] = FacCoverage.cell_value(i, j) 

        j+=1 

    i+=1 

print ("Customers served by facility:", cust_served) 

 

i = 1 

for parent in parents : 
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    raw_available[parent] = RawAvail.cell_value(1,i) 

    i = i+1 

print ("Raw material available at parent company:", raw_available) 

i = 1 

for facility in facilities : 

    manuf_cap[facility] = ManufCap.cell_value(i,1)    

    i = i+1 

print ("Manufacturing capacity at facility:", manuf_cap) 

i = 1 

for customer in customers : 

    demand_cust[customer] = Demand.cell_value(i,1)     

    i = i+1 

print ("Demand of customer:", demand_cust) 

manuf_cost = {} 

i = 1 

for facility in facilities : 

    manuf_cost[facility] = ManufCost.cell_value(i,1)     

    i = i+1 

print ("Manufacturing cost at facility:", manuf_cost) 

print ("Manufacturing cost =", manuf_cost) 

print ("Product revenue =", revenue) 

print ("Emission cost =", cost_emission) 

print ("Raw material needed for manufacturing =", raw_need) 

# %%Create Optimization Model for Facility A 

Y_A = 0 

Y_B = 0 

Y_C = 0 
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# Create the model ------------------------------- 

m_A = gp.Model('Facility A') 

 

# Decision Variables ---------------------------------------------- 

X_A = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_A[p, f, c] = m_A.addVar(vtype=GRB.CONTINUOUS, name="X_A_%s_%s_%s" % (p, f, c)) 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    if f != "A": 

        m_A.addConstr(gp.quicksum(X_A[p, f, c] for p in products for c in customers) == 0, f"Production at {f} initial 

stage") 

Y_A = raw_need * gp.quicksum(X_A[p, "A", c] for p in products for c in customers) # Raw material needed 

constraint (direct calculation without introducing a new decision variable) 

for p in parents: 

    m_A.addConstr(Y_A <= (raw_available[p] - Y_B - Y_C), "Raw material availability") 

     

m_A.addConstr(gp.quicksum(X_A[p, "A", c] for p in products for c in customers) <= manuf_cap["A"], 

"Manufacturing capacity at facility A") 

for c in customers: 

    m_A.addConstr(gp.quicksum(X_A[p, 'B', c] + X_A[p, 'C', c] for p in products for c in customers) + 

                  gp.quicksum(X_A[p, 'A', c] for p in products) <= demand_cust[c] * cust_served[c, "A"], "Demand 

customer")   

 

# Objective function ----------------------------------------------- 
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sum_Profit_A = gp.quicksum((revenue - manuf_cost[f]) * X_A[p, f, c] 

                          for p in products 

                          for f in facilities if f == "A" 

                          for c in customers) 

m_A.setObjective(sum_Profit_A, GRB.MAXIMIZE) 

 

m_A.setParam('MIPGap', 0.001) 

m_A.setParam('Timelimit', 36000) 

m_A.optimize() 

# %% 

# Retrieve solution attributes for model A 

X_A_out = m_A.getAttr('X', X_A) 

# Print the solution attributes 

print("Solution attributes for Model A:") 

for key, value in X_A_out.items(): 

    print(f"{key}: {value}") 

Y_values = {} 

# Iterate over each facility 

for facility in facilities: 

    # Calculate Y for the current facility based on the optimized values of the decision variables 

    Y_value = raw_need * gp.quicksum(X_A_out[p, facility, c] for p in products for c in customers) 

    # Store the calculated Y value for the current facility in the dictionary 

    Y_values[facility] = Y_value 

# Access the Y values for each facility as needed 

Y_A_value = Y_values["A"] 

Y_B_value = Y_values["B"] 

Y_C_value = Y_values["C"] 
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for facility, Y_value in Y_values.items(): 

    print(f"Y value for Facility {facility}: {Y_value}") 

 

# Retrieve the solution from Model A 

solution_A = {} 

for v in m_A.getVars(): 

    solution_A[v.varName] = v.x 

# Print the solution attributes from Model A 

print("Solution from Model A:") 

for var_name, var_value in solution_A.items(): 

    print(f"{var_name}: {var_value}") 

 

obj_value_A = m_A.objVal 

print("Objective function value for Model B:", obj_value_A) 

#%% Create Optimization Model for Facility B 

 

# # Create the model ------------------------------- 

m_B = gp.Model('Facility B') 

 

# Decision Variables ---------------------------------------------- 

X_B = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_B[p, f, c] = m_B.addVar(vtype=GRB.CONTINUOUS, name="X_B_%s_%s_%s" % (p, f, c)) 

     

# # Add Constraints -------------------------------------------------------------- 
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Y_B = raw_need * gp.quicksum(X_B[p, "B", c] for p in products for c in customers) # Raw material needed 

constraint (direct calculation without introducing a new decision variable) 

for p in parents: 

    m_B.addConstr(Y_B <= (raw_available[p] - Y_A_value - Y_C_value), "Raw material availability") 

     

m_B.addConstr(gp.quicksum(X_B[p, "B", c] for p in products for c in customers) <= manuf_cap["B"], 

"Manufacturing capacity at facility B") 

for c in customers: 

    m_B.addConstr(gp.quicksum(X_B[p, 'B', c] for p in products) <= demand_cust[c] * cust_served[c, "B"] - 

gp.quicksum(X_B[p, 'A', c] + X_B[p, 'C', c] for p in products for c in customers), "Demand customer") 

   

# Add constraint for Facility B: X_B + X_A_out <= demand 

for c in customers: 

    for p in products: 

        # Add the constraint for each combination of customer and product 

        m_B.addConstr(X_B[p, "B", c] + X_A_out[p, "A", c] <= demand_cust[c] , f"Constraint_demand_{p}_{c}") 

# Objective function ----------------------------------------------- 

sum_Profit_B = gp.quicksum(X_B[p, f, c] * (3 if c == 3 else 1) 

                           for p in products 

                           for f in facilities if f == "B" 

                           for c in customers) 

m_B.setObjective(sum_Profit_B, GRB.MAXIMIZE) 

m_B.setParam('MIPGap', 0.001) 

m_B.setParam('Timelimit', 36000) 

m_B.optimize() 

 

# Retrieve solution attributes 

X_B_out = m_B.getAttr('X', X_B) 
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print("SOLUTION FOR MODEL B ABOVE") 

# Corrected part to retrieve solution attributes 

if m_B.status == GRB.OPTIMAL: 

    print("SOLUTION FOR MODEL B ABOVE") 

    # Print the solution attributes directly 

    for v in m_B.getVars(): 

        print(f'{v.varName} = {v.x}') 

else: 

    print("Model B optimization was not successful.") 

Y_values_B = {} 

# Iterate over each facility 

for facility in facilities: 

    # Calculate Y for the current facility based on the optimized values of the decision variables 

    Y_value_B = raw_need * gp.quicksum(X_B_out[p, facility, c] for p in products for c in customers) 

    # Store the calculated Y value for the current facility in the dictionary 

    Y_values_B[facility] = Y_value_B 

 

# Access the Y values for each facility as needed 

Y_A_value_B = Y_values_B["A"] 

Y_B_value_B = Y_values_B["B"] 

Y_C_value_B = Y_values_B["C"] 

 

for facility, Y_value_B in Y_values_B.items(): 

    print(f"Y value for Facility {facility}: {Y_value_B}") 

 

obj_value_B = m_B.objVal 

print("Objective function value for Model B:", obj_value_B) 
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# %% 

# Retrieve solution attributes for model B 

X_B_out = m_B.getAttr('X', X_B) 

# Print the solution attributes 

print("Solution attributes for Model B:") 

for key, value in X_B_out.items(): 

    print(f"{key}: {value}") 

# Retrieve the solution from Model A 

solution_B = {} 

for v in m_B.getVars(): 

    solution_B[v.varName] = v.x 

# Print the solution attributes from Model A 

print("Solution from Model B:") 

for var_name, var_value in solution_B.items(): 

    print(f"{var_name}: {var_value}") 

 

#%% Create Optimization Model for Facility C 

 

# # Create the model ------------------------------- 

m_C = gp.Model('Facility C') 

 

# Decision Variables ---------------------------------------------- 

X_C = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_C[p, f, c] = m_C.addVar(vtype=GRB.CONTINUOUS, name="X_C_%s_%s_%s" % (p, f, c)) 
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# # Add Constraints -------------------------------------------------------------- 

             

Y_C = raw_need * gp.quicksum(X_C[p, "C", c] for p in products for c in customers) # Raw material needed 

constraint (direct calculation without introducing a new decision variable) 

for p in parents: 

    m_C.addConstr(Y_C <= (raw_available[p] - Y_A_value_B - Y_A_value - Y_C_value_B - Y_C_value), "Raw 

material availability") 

    

m_C.addConstr(gp.quicksum(X_C[p, "C", c] for p in products for c in customers) <= manuf_cap["C"], 

"Manufacturing capacity at facility B") 

 

for c in customers: 

    m_C.addConstr(gp.quicksum(X_C[p, 'C', c] for p in products) <= demand_cust[c] * cust_served[c, "C"] - 

gp.quicksum(X_C[p, 'A', c] + X_C[p, 'B', c] for p in products for c in customers), "Demand customer") 

    

# Add constraint for Facility B: X_B + X_A_out <= demand 

for c in customers: 

    for p in products: 

        # Add the constraint for each combination of customer and product 

        m_C.addConstr(X_C[p, "C", c] + X_A_out[p, "A", c] + X_B_out[p, "B", c]>= demand_cust[c] , 

f"Constraint_demand_{p}_{c}") 

 

# Objective function ----------------------------------------------- 

sum_Cost_C = gp.quicksum(cost_emission * X_C[p, f, c] 

                         for p in products 

                         for f in facilities if f == "C" 

                         for c in customers) 
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m_C.setObjective(sum_Cost_C, GRB.MINIMIZE) 

m_C.setParam('MIPGap', 0.001) 

m_C.setParam('Timelimit', 36000) 

m_C.optimize() 

# Retrieve solution attributes 

X_C_out = m_C.getAttr('X', X_C) 

print("SOLUTION FOR MODEL C ABOVE") 

# Corrected part to retrieve solution attributes 

if m_C.status == GRB.OPTIMAL: 

    print("SOLUTION FOR MODEL C ABOVE") 

    # Print the solution attributes directly 

    for v in m_C.getVars(): 

        print(f'{v.varName} = {v.x}') 

else: 

    print("Model C optimization was not successful.") 

 

Y_values_C = {} 

# Iterate over each facility 

for facility in facilities: 

    # Calculate Y for the current facility based on the optimized values of the decision variables 

    Y_value_C = raw_need * gp.quicksum(X_C_out[p, facility, c] for p in products for c in customers) 

    # Store the calculated Y value for the current facility in the dictionary 

    Y_values_C[facility] = Y_value_C 

 

# Access the Y values for each facility as needed 

Y_A_value_C = Y_values_B["C"] 

Y_B_value_C = Y_values_B["C"] 

Y_C_value_C = Y_values_B["C"] 
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for facility, Y_value_C in Y_values_C.items(): 

    print(f"Y value for Facility {facility}: {Y_value_C}") 

 

obj_value_C = m_C.objVal 

print("Objective function value for Model C:", obj_value_C) 

 

#%%  Output file 

 

OutputFile = open(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li - Distributed 

Manufacturing\Code\PPMM - Small example - output ABC.txt", "w") 

 

# Production Summary for Model A 

OutputFile.write('\n********Production Planning Results*********\n') 

OutputFile.write('\nDataset: ' + dataset) 

OutputFile.write('\n\n') 

OutputFile.write('\n\n ***Production Summary for Model A:\n\n') 

 

for f in facilities: 

    OutputFile.write('\n\n Production at Facility %s:\n\n' % f) 

    for p in products: 

        for c in customers: 

            OutputFile.write('  Customer %d: %d units\n' % (c, X_A_out[p, f, c])) 

 

# Total Production for Model A at Each Facility 

total_production_A = {f: gp.quicksum(X_A_out[p, f, c] for p in products for c in customers).getValue() for f in 

facilities} 

OutputFile.write('\n\nTotal Production for Model A at Each Facility:\n\n') 
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for f, value in total_production_A.items(): 

    OutputFile.write('Facility %s: %d units\n' % (f, value)) 

 

# Values of Y for Model A (Facility Assignment) 

OutputFile.write('\n\nValues of Y for Model A (Raw Material Assignment):\n\n') 

OutputFile.write(f'Facility A: {Y_A_value}\n') 

OutputFile.write(f'Facility B: {Y_B_value}\n') 

OutputFile.write(f'Facility C: {Y_C_value}\n') 

 

OutputFile.write('\n\n \n\n') 

# Production Summary for Model B 

OutputFile.write('\n\n ****Production Summary for Model B:\n\n') 

 

for f in facilities: 

    OutputFile.write('\n\nProduction at Facility %s:\n\n' % f) 

    for p in products: 

        for c in customers: 

            OutputFile.write('  Customer %d: %d units\n' % (c, X_B_out[p, f, c])) 

 

# Total Production for Model B at Each Facility 

total_production_B = {f: gp.quicksum(X_B_out[p, f, c] for p in products for c in customers).getValue() for f in 

facilities} 

OutputFile.write('\n\nTotal Production for Model B at Each Facility:\n\n') 

 

for f, value in total_production_B.items(): 

    OutputFile.write('Facility %s: %d units\n' % (f, value)) 

 

# Values of Y for Model B (Facility Assignment) 
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OutputFile.write('\n\nValues of Y for Model B (Raw Material Assignment):\n\n') 

OutputFile.write(f'Facility A: {Y_A_value_B}\n') 

OutputFile.write(f'Facility B: {Y_B_value_B}\n') 

OutputFile.write(f'Facility C: {Y_C_value_B}\n') 

 

# Production Summary for Model C 

OutputFile.write('\n\n ***Production Summary for Model C:\n\n') 

 

for f in facilities: 

    OutputFile.write('\n\n Production at Facility %s:\n\n' % f) 

    for p in products: 

        for c in customers: 

            OutputFile.write('  Customer %d: %d units\n' % (c, X_C_out[p, f, c])) 

 

# Total Production for Model A at Each Facility 

total_production_C = {f: gp.quicksum(X_C_out[p, f, c] for p in products for c in customers).getValue() for f in 

facilities} 

OutputFile.write('\n\nTotal Production for Model C at Each Facility:\n\n') 

 

for f, value in total_production_C.items(): 

    OutputFile.write('Facility %s: %d units\n' % (f, value)) 

 

# Values of Y for Model A (Facility Assignment) 

OutputFile.write('\n\nValues of Y for Model C (Raw Material Assignment):\n\n') 

 

for facility, Y_value_C in Y_values_C.items(): 

    OutputFile.write(f"Y value for Facility {facility}: {Y_value_C} \n") 
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OutputFile.write('\n\n' ) 

# Sum of X_B and X_A_out for Each Customer and Product 

OutputFile.write('\n ****** Sum of X_B and X_A_out and X_C_out for Each Customer and Product:\n\n') 

for c in customers: 

    for p in products: 

        sum_X_B_X_A_out_X_C_out = X_B_out[p, "B", c] + X_A_out[p, "A", c] + X_C_out[p, "C", c] 

        OutputFile.write(f'Customer {c}, Product {p}: {sum_X_B_X_A_out_X_C_out} units\n') 

         

# Sum of Y_value and Y_value_B for Each Customer and Product 

OutputFile.write('\n\nSum of Raw Material Assigned for Each Customer and Product:\n\n') 

 

for f in facilities: 

        sum_Y_value_Y_value_B_Y_value_V = Y_values[f] + Y_values_B[f]  + Y_values_C[f] 

        OutputFile.write(f'Facility {f}: {sum_Y_value_Y_value_B_Y_value_V} units\n') 

# Total Production for Model A at Each Facility 

total_production = {f: gp.quicksum(X_A_out[p, f, c] + X_B_out[p, f, c] +X_C_out[p, f, c] for p in products for c in 

customers).getValue() for f in facilities} 

OutputFile.write('\n\nTotal Production at Each Facility:\n\n') 

 

for f, value in total_production.items(): 

    OutputFile.write('Facility %s: %d units\n' % (f, value)) 

# Objective function values 

OutputFile.write('\n\n ***** Objective function values:')     

OutputFile.write('\n\nObjective function value for Model A - Max. Profit: ' + str(obj_value_A)) 

OutputFile.write('\n\nObjective function value for Model B - Max. Market Share of a customer: ' + 

str(obj_value_B)) 

OutputFile.write('\n\nObjective function value for Model C - Min. Emission Cost: ' + str(obj_value_C)) 
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## Metrics ----------- 

OutputFile.write('\n\n *****General metrics:**** \n\n') 

#Total profit 

OutputFile.write("\n\nTotal profit") 

total_production = {} 

total_profit = 0 

for f in facilities: 

    total_production[f] = gp.quicksum(X_B_out[p, f, c] + X_A_out[p, f, c] + X_C_out[p, f, c] for p in products for c 

in customers) 

    facility_profit = total_production[f].getValue() * (revenue - manuf_cost[f]) 

    total_profit += facility_profit 

     

    OutputFile.write("\n") 

    OutputFile.write("Total production at Facility " + f + ": " + str(total_production[f].getValue()) + "\n") 

    OutputFile.write("Total profit at Facility " + f + ": " + str(facility_profit) + "\n") 

 

OutputFile.write("\n") 

OutputFile.write("Total profit across all facilities: " + str(total_profit) + "\n") 

 

#Customer 3 market sharet 

OutputFile.write("\n\n\nMarket share - Customer 3 \n") 

total_share=0 

total_market= 0  

for f in facilities: 

    for p in products: 

        production_ABC3 = X_A_out[p, f, 3] + X_B_out[p, f, 3] + X_C_out[p, f, 3] 

        market_ABC3 = (revenue - manuf_cost[f]) * production_ABC3 

        OutputFile.write('Customer %d at Facility %s: %d units\n' % (3, f, production_ABC3)) 
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        OutputFile.write('Customer %d at Facility %s: %d profit units\n' % (3, f, market_ABC3)+'\n') 

        total_share += production_ABC3 

        total_market += market_ABC3 

        

OutputFile.write("\n") 

OutputFile.write("Total market share across all facilities: " + str(total_share) + "\n") 

OutputFile.write("Total market share profit across all facilities: " + str(total_market) + "\n") 

 

# Carbon emission cost 

OutputFile.write("\n\n\nEmission costs:") 

total_emission_cost = 0 

for f in facilities: 

    total_production[f] = gp.quicksum(X_B_out[p, f, c] + X_A_out[p, f, c] + X_C_out[p, f, c] for p in products for c 

in customers) 

    emission_cost = total_production[f].getValue() * (cost_emission_reduced if f == "C" else cost_emission) 

    total_emission_cost += emission_cost 

     

    OutputFile.write("\n") 

    OutputFile.write("Total production at Facility " + f + ": " + str(total_production[f].getValue()) + "\n") 

    OutputFile.write("Total emission cost at Facility " + f + ": " + str(emission_cost) + "\n") 

OutputFile.write("\n") 

OutputFile.write("Total emission cost across all facilities: " + str(total_emission_cost) + "\n") 

OutputFile.close() 
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Appendix C Python Code for the DMS-CACS Approach 

# -*- coding: utf-8 -*- 

import xlrd 

import gurobipy as gp 

from gurobipy import GRB 

import itertools 

# import random 

# %% Load the workbook, and map sheets to variables 

dataset = r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\PPMM - Small example - Paula Penagos.xls" 

datafile = xlrd.open_workbook(dataset) 

SetSheet = datafile.sheet_by_name("Sets") 

FacCoverage = datafile.sheet_by_name("Facilities coverage") 

RawAvail = datafile.sheet_by_name("Raw material avail.") 

ManufCap = datafile.sheet_by_name("Manufacturing cap.") 

Demand = datafile.sheet_by_name("Demand") 

ManufCost = datafile.sheet_by_name("Cost of manufacturing")  

Demand = datafile.sheet_by_name("Demand") 

Costs = datafile.sheet_by_name("Costs") 

 

# %% %Sets 

parents = [] 

facilities = [] 

customers = [] 

products = [] 

nParent = 1 

nFacilities = 3 

nCustomers = 7 
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nProducts = 1 

i=1 

while (i < nParent +1): 

    try: 

        parent = SetSheet.cell_value(0,i).strip() 

        parents.append(parent) 

        i=i+1 

    except IndexError: 

        break 

print("Set of parent companies: ", parents) 

i=1 

while (i < nFacilities +1): 

    try: 

        facility = SetSheet.cell_value(1,i).strip() 

        facilities.append(facility) 

        i=i+1 

    except IndexError: 

        break 

print("Set of manufacuring facilities: ", facilities) 

i=1 

while (i < nCustomers +1): 

    try: 

        customer = int(SetSheet.cell_value(2,i)) 

        customers.append(customer) 

        i=i+1 

    except IndexError:   

        break 
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print("Set of customers: ", customers) 

i=1 

while (i < nProducts +1): 

    try: 

        product = SetSheet.cell_value(3,i).strip() 

        products.append(product) 

        i=i+1 

    except IndexError: 

        break 

print("Set of products: ", products) 

# %% Parameters 

cust_served = {} 

raw_available = {} 

manuf_cap = {} 

demand_cust = {} 

# manuf_cost = 1 #if it is constant 

revenue = 5 

cost_emission = 0.5 

cost_emission_reduced = 0.25 

raw_need = 0.8 

cost_raw = 1 

raw_available = 100 

weight_deviation_raw = 0.3 

weight_demand_fulfillment = 1 

i = 1 

for customer in customers : 

    j = 1 

    for facility in facilities : 
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        cust_served[customer, facility] = FacCoverage.cell_value(i, j) 

        j+=1 

    i+=1 

print ("Customers served by facility:", cust_served) 

# i = 1 

# for parent in parents : 

#     raw_available[parent] = RawAvail.cell_value(1,i) 

#     i = i+1 

# print ("Raw material available at parent company:", raw_available) 

i = 1 

for facility in facilities : 

    manuf_cap[facility] = ManufCap.cell_value(i,1)    

    i = i+1 

print ("Manufacturing capacity at facility:", manuf_cap) 

i = 1 

for customer in customers : 

    demand_cust[customer] = Demand.cell_value(i,1)     

    i = i+1 

print ("Demand of customer:", demand_cust) 

manuf_cost = {} 

i = 1 

for facility in facilities : 

    manuf_cost[facility] = ManufCost.cell_value(i,1)     

    i = i+1 

print ("Manufacturing cost at facility:", manuf_cost) 

print ("Manufacturing cost =", manuf_cost) 

print ("Product revenue =", revenue) 

print ("Emission cost =", cost_emission) 
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print ("Raw material needed for manufacturing =", raw_need) 

#%% MANUAL TRIAL WITH THE VARIABLE SAVE  

Y_A = 0 

Y_B = 0 

Y_C = 0 

Y_A_OUT = 0 

Y_B_OUT = 0 

Y_C_OUT = 0 

# Initialize X_out to an empty dictionary 

X_out = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            # X_out[p, f, c] = random.randint(1, 20) 

            X_out[p, f, c] = 0             

print("X_out: ", X_out, "\n\n") 

X_out_raw ={} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            # X_out_raw[p, f, c] = random.randint(1, 20) 

            X_out_raw[p, f, c] = 0             

print("X_out: ", X_out_raw, "\n\n") 

#%% facility A 

print("----------------\n\n Facility A \n\n --------------- \n\n") 

Y_A = Y_A_OUT 

Y_B = Y_B_OUT 

Y_C = Y_C_OUT 
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print("\n\n ------------------------\n\n") 

print("Y value for Facility A: " , Y_A) 

print("Y value for Facility B: " , Y_B) 

print("Y value for Facility C: " , Y_C) 

print("----------------") 

i = i + 1 

f_a =1 

f_b=0 

f_c=0 

print(f"Round {i} :") 

# Create the model ------------------------------- 

m = gp.Model('Facility GENERALIZED') 

# Decision Variables ---------------------------------------------- 

X = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X[p, f, c] = m.addVar(vtype=GRB.CONTINUOUS, name="X_%s_%s_%s" % (p, f, c)) 

# Add Constraints -------------------------------------------------------------- 

 

for f in facilities: 

    if (f == "A" and f_a == 0) or (f == "B" and f_b == 0) or (f == "C" and f_c == 0): 

        m.addConstr(gp.quicksum(X[p, f, c] for p in products for c in customers) == 0, f"Production at {f} initial 

stage") 

if f_a == 1: 

    Y_A = raw_need * gp.quicksum(X[p, "A", c] for p in products for c in customers)  # Raw material needed 

constraint 
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elif f_b == 1: 

    Y_B =  raw_need * gp.quicksum(X[p, "B", c] for p in products for c in customers)  # Raw material needed 

constraint 

elif f_c == 1: 

    Y_C = raw_need * gp.quicksum(X[p, "C", c] for p in products for c in customers)  # Raw material needed 

constraint 

for p in parents: 

    m.addConstr(f_a * Y_A + f_b * Y_B + f_c * Y_C <= (raw_available - (f_a - 1) * Y_A + (f_b - 1) * Y_B + (f_c - 

1) * Y_C), "Raw material availability") 

if f_a == 1: 

    m.addConstr(gp.quicksum(X[p, "A", c] for p in products for c in customers) <= manuf_cap["A"], "Manufacturing 

capacity at facility A") 

elif f_b == 1: 

    m.addConstr(gp.quicksum(X[p, "B", c] for p in products for c in customers) <= manuf_cap["B"], "Manufacturing 

capacity at facility B") 

elif f_c == 1: 

    m.addConstr(gp.quicksum(X[p, "C", c] for p in products for c in customers) <= manuf_cap["C"], "Manufacturing 

capacity at facility C") 

for c in customers: 

    if f_a == 1: 

        if cust_served[c, "A"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'A', c] for p in products) == demand_cust[c] * cust_served[c, "A"],     

               "Demand customer"          

               )  

        if cust_served[c, "A"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'A', c] for p in products) + 
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                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "A") <= demand_cust[c] * 

cust_served[c, "A"],     

                "Demand customer"          

                )         

    elif f_b == 1: 

        if cust_served[c, "B"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'B', c] for p in products) == demand_cust[c] * cust_served[c, "B"],     

               "Demand customer"          

               )  

        if cust_served[c, "B"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'B', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "B") <= demand_cust[c] * 

cust_served[c, "B"], 

                "Demand customer" 

            ) 

      

    elif f_c == 1: 

        if cust_served[c, "C"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'C', c] for p in products) == demand_cust[c] * cust_served[c, "C"],     

               "Demand customer"          

               )  

        if cust_served[c, "C"] == 1:   

                    m.addConstr( 

                gp.quicksum(X[p, 'C', c] for p in products) + 
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                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "C") >= demand_cust[c] * 

cust_served[c, "C"], 

                "Demand customer" 

            ) 

# Objective function ----------------------------------------------- 

objective = 0 

# Sum profit if a == 1 (for facility A) 

if f_a == 1: 

    sum_Profit_A = gp.quicksum((revenue - manuf_cost[f]) * X[p, f, c] 

                                for p in products 

                                for f in facilities if f == "A" 

                                for c in customers) 

    objective += sum_Profit_A  # Maximize profit for A 

 

# Sum profit if b == 1 (for facility B) 

elif f_b == 1: 

    sum_Profit_B = gp.quicksum(X[p, f, c] * (3 if c == 3 else 1) 

                                for p in products 

                                for f in facilities if f == "B" 

                                for c in customers) 

    objective += sum_Profit_B  # Maximize profit for B 

 

# Sum cost if c == 1 (for facility C) 

if f_c == 1: 

    sum_Cost_C = gp.quicksum(cost_emission * X[p, f, c] 

                              for p in products 

                              for f in facilities if f == "C" 

                              for c in customers) 
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    objective -= sum_Cost_C  # Minimize cost for C 

# Set the objective for the model 

m.setObjective(objective, GRB.MAXIMIZE) 

m.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\FACILITY problems.lp") 

 

# Set parameters and optimize the model 

m.setParam('MIPGap', 0.001) 

m.setParam('Timelimit', 36000) 

m.optimize() 

print("Round: ", i, "\n")  

if m.status == GRB.OPTIMAL: 

    print("Optimal objective value:", m.ObjVal) 

    # Retrieve solution attributes from the model 

    X_out_raw = m.getAttr('X', X) 

 

    # Update global_X_out with the current X_out values 

    for key, value in X_out_raw.items(): 

        X_out_raw[key] = value 

     

    print("X_out_raw updated: ", X_out_raw, "\n\n")     

    # print("X_out updated: ", X_out, "\n\n") 

     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # X_out[p, f, c] = random.randint(1, 20) 

                X_out[p, f, c] = X_out[p, f, c]  + X_out_raw[p, f, c]  
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    print("X_out updated: ", X_out, "\n\n")     

    print("\n\n ------------------------\n\nSUMMARY OF RESULTS: \n") 

    for p in products: 

        for c in customers: 

            for f in facilities: 

                value = X_out[p, f, c]                 

                if value != 0: 

                    print(f"The value of X[{p}, {f}, {c}] is: {value}")   

    Y_values = {} 

    # Iterate over each facility 

    for facility in facilities: 

        # Calculate Y for the current facility based on the optimized values of the decision variables 

        Y_value = raw_need * gp.quicksum(X_out_raw[p, facility, c] for p in products for c in customers) 

        # Store the calculated Y value for the current facility in the dictionary 

        Y_values[facility] = Y_value 

    # Access the Y values for each facility as needed 

    Y_A_value = Y_values["A"] 

    Y_B_value = Y_values["B"] 

    Y_C_value = Y_values["C"] 

    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_value) 

    print("Y value for Facility B: " , Y_B_value) 

    print("Y value for Facility C: " , Y_C_value)    

     

    Y_A_OUT = Y_A_OUT* f_a + Y_A_value  

    Y_B_OUT = Y_B_OUT* f_b + Y_B_value  

    Y_C_OUT = Y_C_OUT* f_c + Y_C_value  

     



75 

 

    

    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_OUT) 

    print("Y value for Facility B: " , Y_B_OUT) 

    print("Y value for Facility C: " , Y_C_OUT)    

 

    Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    print("\n\n ----- RAW available after all: ", Y_available) 

    # Retrieve the solution from Model A 

    solution = {} 

    for v in m.getVars(): 

        solution[v.varName] = v.x 

# Reset the previously run model 

m.reset()              

#%% Parent company problem --> FAC A REVISION 

print("----------------\n\n Parent revision after Facility A \n\n --------------- \n\n")         

 

# Create the model ------------------------------- 

m_P = gp.Model('Parent P') 

# Decision Variables ----------------------------------------------              

Y = {} 

for f in facilities: 

    Y[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="Y_%s" % (f)) 

 X_parent = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_parent[p, f, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="X_parent_%s_%s_%s" % (p, f, c)) 
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deviation = {} 

for f in facilities: 

    deviation[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="deviation_%s" % (f)) 

D = {} #Demand gap 

for c in customers: 

    for p in products: 

        D[p, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="D_%s_%s" % (p, c)) 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    m_P.addConstr(gp.quicksum(raw_need *  X_parent[(p, f, c)]  for p in products for c in customers) <= Y[f] , 

"Supply availability") 

m_P.addConstr(gp.quicksum(Y[f] for f in facilities) <= raw_available, "Supply availability") 

for f in facilities: 

    for p in products: 

        for c in customers: 

            m_P.addConstr(X_parent[(p, f, c)] <= raw_available *  cust_served[c,f]) 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Pos") 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (-1) * (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Neg") 

for c in customers: 

    for p in products: 

        m_P.addConstr((gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= demand_cust[c] , f"Demand 

constraint {c}")         

        m_P.addConstr(((-1)*gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= (-1)*demand_cust[c] , 

f"Demand constraint {c}") 
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# Objective function ----------------------------------------------- 

total_revenue = 0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_revenue += revenue * X_parent[p, f, c]             

total_raw_cost = 0 

for f in facilities: 

    total_raw_cost += cost_raw * Y[f]     

total_manuf_cost = 0      

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_manuf_cost += manuf_cost[f] * X_parent[p, f, c]       

total_co2_cost =0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_co2_cost += cost_emission * X_parent[p, f, c]  

total_deviation = 0 

for f in facilities: 

    total_deviation += weight_deviation_raw*deviation[f] 

total_gap = 0 

gap_cost= 5 

for c in customers: 

    for p in products: 

        total_gap += weight_demand_fulfillment*gap_cost*D[p,c] 
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total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost 

objective =  total_global - total_deviation - total_gap 

profit =  total_global - total_gap 

m_P.setObjective(objective, GRB.MAXIMIZE) 

m_P.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\PARENT problems.lp") 

m_P.setParam('MIPGap', 0.001) 

m_P.setParam('Timelimit', 36000) 

m_P.optimize() 

# Print Y and D variables 

if m_P.status == GRB.OPTIMAL: 

    print("Optimized values for Y and Deviation:") 

    for f in facilities: 

        print(f"Y[{f}] = {Y[f].X}") 

        print(f"deviation[{f}] = {deviation[f].X}")         

    for p in products: 

        for f in facilities: 

            for c in customers: 

                print(f"X_parent[{p}, {f}, {c}] = {X_parent[p, f, c].X}")     

    print("\n\n ---------- \n\nObjective function values:\n") 

    # Calculate total_revenue 

    total_revenue = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # total_revenue += revenue * X_parent[p, f, c].X  ##This is actually not all what they produced but what 

they sell.  
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                if X_parent[p, f, c].X > demand_cust[c]: 

                    total_revenue += revenue * demand_cust[c]   

                else:     

                    total_revenue += revenue * X_parent[p, f, c].X       

     

    # Calculate total_raw_cost 

    total_raw_cost = 0 

    for f in facilities: 

        total_raw_cost += cost_raw * Y[f].X 

     

    # Calculate total_manuf_cost 

    total_manuf_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_manuf_cost += manuf_cost[f] * X_parent[p, f, c].X 

     

    # Calculate total_co2_cost 

    total_co2_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_co2_cost += cost_emission * X_parent[p, f, c].X     

    # Calculate total_deviation 

    total_deviation = 0 

    for f in facilities: 

        total_deviation += deviation[f].X 
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    total_gap = 0 

    gap_cost= 5 

    for c in customers: 

        for p in products: 

            total_gap += gap_cost*D[p,c].X         

    # Calculate total_global 

    total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost     

    # Print the extracted values 

    print(f"Total Revenue: {total_revenue}") 

    print(f"Total Raw Cost: {total_raw_cost}") 

    print(f"Total Manufacturing Cost: {total_manuf_cost}") 

    print(f"Total CO2 Cost: {total_co2_cost}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"Total Deviation (without weight): {total_deviation}") 

    print(f"Total Gap cost (without weight): {total_gap}") 

    print("\n\n ---------- \n\nFacility objective values for global optima:\n") 

    sum_Profit_A_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'A': 

                for c in customers: 

                    sum_Profit_A_parent += ((revenue - manuf_cost[f]) * X_parent[p, f, c].X)     

    print(f"Obj. fn. For Facility A (profit): {sum_Profit_A_parent}") 
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    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X)                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}") 

    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X) 

                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}") 

       

    sum_Cost_C_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'C': 

                for c in customers: 

                    sum_Cost_C_parent += (cost_emission * X_parent[p, f, c].X) 
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    print(f"Obj. fn. For Facility C (Cost): {sum_Cost_C_parent}")     

    print("\n\n ---------- \n\nDifferences between X_parent and X_out variables:\n")     

    differences_found = False  # To track if any differences are found     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # Get the optimized value from the model and the corresponding value from X_out 

                X_parent_val = X_parent[p, f, c].X 

                X_out_val = X_out[p, f, c]                 

                # Compare the two values 

                if abs(X_parent_val - X_out_val) > 1e-6:  # Using a small threshold to avoid floating-point issues 

                    print(f"Difference found for [{p}, {f}, {c}]: X_parent = {X_parent_val}, X_out = {X_out_val}") 

                    differences_found = True     

    if not differences_found: 

        print("No differences found between X_parent and X_out.")   

     

    # Calculate total_co2_cost 

    total_production = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_production += X_parent[p, f, c].X     

    print(total_production)     

    for c in customers: 

        for p in products: 

            if D[p,c].X != 0:  # Checking if the demand gap for customer c is non-zero 

                print(f"Customer {c} for product {p} has a demand gap of {D[p,c].X}") 
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      # Extract values for Y[A] and Y[B] 

    Y_A_OUT = Y['A'].X 

    Y_B_OUT = Y['B'].X 

    Y_C_OUT = Y['C'].X 

     

    print(f"Y_A_OUT = {Y_A_OUT}") 

    print(f"Y_B_OUT = {Y_B_OUT}") 

    print(f"Y_C_OUT = {Y_C_OUT}") 

     

    Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    print("\n\n ----- RAW available after all: ", Y_available)     

else: 

    print("Optimization was not successful.") 

m_P.reset()  

#%% facility b 

print("----------------\n\n Facility B \n\n --------------- \n\n") 

Y_A = Y_A_OUT 

Y_B = Y_B_OUT 

Y_C = Y_C_OUT     

print("\n\n ------------------------\n\n") 

print("Y value for Facility A: " , Y_A) 

print("Y value for Facility B: " , Y_B) 

print("Y value for Facility C: " , Y_C) 

print("----------------") 

i = i + 1 
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f_a =0 

f_b=1 

f_c=0 

print(f"Round {i} :") 

# Create the model ------------------------------- 

m = gp.Model('Facility GENERALIZED') 

# Decision Variables ---------------------------------------------- 

X = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X[p, f, c] = m.addVar(vtype=GRB.CONTINUOUS, name="X_%s_%s_%s" % (p, f, c)) 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    if (f == "A" and f_a == 0) or (f == "B" and f_b == 0) or (f == "C" and f_c == 0): 

        m.addConstr(gp.quicksum(X[p, f, c] for p in products for c in customers) == 0, f"Production at {f} initial 

stage") 

if f_a == 1: 

    Y_A = raw_need * gp.quicksum(X[p, "A", c] for p in products for c in customers)  # Raw material needed 

constraint 

elif f_b == 1: 

    Y_B =  raw_need * gp.quicksum(X[p, "B", c] for p in products for c in customers)  # Raw material needed 

constraint 

elif f_c == 1: 

    Y_C = raw_need * gp.quicksum(X[p, "C", c] for p in products for c in customers)  # Raw material needed 

constraint 
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for p in parents: 

    m.addConstr(f_a * Y_A + f_b * Y_B + f_c * Y_C <= 44, "Raw material availability") 

if f_a == 1: 

    m.addConstr(gp.quicksum(X[p, "A", c] for p in products for c in customers) <= manuf_cap["A"], "Manufacturing 

capacity at facility A") 

elif f_b == 1: 

    m.addConstr(gp.quicksum(X[p, "B", c] for p in products for c in customers) <= manuf_cap["B"], "Manufacturing 

capacity at facility B") 

elif f_c == 1: 

    m.addConstr(gp.quicksum(X[p, "C", c] for p in products for c in customers) <= manuf_cap["C"], "Manufacturing 

capacity at facility C") 

for c in customers: 

    if f_a == 1: 

        if cust_served[c, "A"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'A', c] for p in products) == demand_cust[c] * cust_served[c, "A"],     

               "Demand customer"          

               )  

        if cust_served[c, "A"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'A', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "A") <= demand_cust[c] * 

cust_served[c, "A"],     

                "Demand customer"          

                )        

    elif f_b == 1: 

        if cust_served[c, "B"] == 0: 

           m.addConstr( 
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               gp.quicksum(X[p, 'B', c] for p in products) == demand_cust[c] * cust_served[c, "B"],     

               "Demand customer"          

               )  

        if cust_served[c, "B"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'B', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "B") <= demand_cust[c] * 

cust_served[c, "B"], 

                "Demand customer" 

            ) 

      

    elif f_c == 1: 

        if cust_served[c, "C"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'C', c] for p in products) == demand_cust[c] * cust_served[c, "C"],     

               "Demand customer"          

               )  

        if cust_served[c, "C"] == 1:   

                    m.addConstr( 

                gp.quicksum(X[p, 'C', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "C") >= demand_cust[c] * 

cust_served[c, "C"], 

                "Demand customer" 

            ) 
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# Objective function ----------------------------------------------- 

objective = 0 

 

# Sum profit if a == 1 (for facility A) 

if f_a == 1: 

    sum_Profit_A = gp.quicksum((revenue - manuf_cost[f]) * X[p, f, c] 

                                for p in products 

                                for f in facilities if f == "A" 

                                for c in customers) 

    objective += sum_Profit_A  # Maximize profit for A 

 

# Sum profit if b == 1 (for facility B) 

elif f_b == 1: 

    sum_Profit_B = gp.quicksum(X[p, f, c] * (3 if c == 3 else 1) 

                                for p in products 

                                for f in facilities if f == "B" 

                                for c in customers) 

    objective += sum_Profit_B  # Maximize profit for B 

 

# Sum cost if c == 1 (for facility C) 

if f_c == 1: 

    sum_Cost_C = gp.quicksum(cost_emission * X[p, f, c] 

                              for p in products 

                              for f in facilities if f == "C" 

                              for c in customers) 

    objective -= sum_Cost_C  # Minimize cost for C 

 

# Set the objective for the model 
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m.setObjective(objective, GRB.MAXIMIZE) 

m.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\FACILITY problems.lp") 

# Set parameters and optimize the model 

m.setParam('MIPGap', 0.001) 

m.setParam('Timelimit', 36000) 

m.optimize() 

print("Round: ", i, "\n")  

 

if m.status == GRB.OPTIMAL: 

    print("Optimal objective value:", m.ObjVal) 

 

    # Retrieve solution attributes from the model 

    X_out_raw = m.getAttr('X', X) 

 

    # Update global_X_out with the current X_out values 

    for key, value in X_out_raw.items(): 

        X_out_raw[key] = value 

     

    print("X_out_raw updated: ", X_out_raw, "\n\n") 

     

    # print("X_out updated: ", X_out, "\n\n") 

     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # X_out[p, f, c] = random.randint(1, 20) 

                X_out[p, f, c] = X_out[p, f, c]  + X_out_raw[p, f, c]  
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    print("X_out updated: ", X_out, "\n\n")     

    print("\n\n ------------------------\n\nSUMMARY OF RESULTS: \n") 

    for p in products: 

        for c in customers: 

            for f in facilities: 

                value = X_out[p, f, c] 

                 

                if value != 0: 

                    print(f"The value of X[{p}, {f}, {c}] is: {value}")   

    Y_values = {} 

    # Iterate over each facility 

    for facility in facilities: 

        # Calculate Y for the current facility based on the optimized values of the decision variables 

        Y_value = raw_need * gp.quicksum(X_out_raw[p, facility, c] for p in products for c in customers) 

        # Store the calculated Y value for the current facility in the dictionary 

        Y_values[facility] = Y_value 

    # Access the Y values for each facility as needed 

    Y_A_value = Y_values["A"] 

    Y_B_value = Y_values["B"] 

    Y_C_value = Y_values["C"] 

    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_value) 

    print("Y value for Facility B: " , Y_B_value) 

    print("Y value for Facility C: " , Y_C_value)   

     

    Y_A_OUT =  Y_A_value  

    Y_B_OUT =  Y_B_value  

    Y_C_OUT =  Y_C_value  
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    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_OUT) 

    print("Y value for Facility B: " , Y_B_OUT) 

    print("Y value for Facility C: " , Y_C_OUT)   

 

    # Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    # print("\n\n ----- RAW available after all: ", Y_available) 

 

    # Retrieve the solution from Model A 

    solution = {} 

    for v in m.getVars(): 

        solution[v.varName] = v.x 

# Reset the previously run model 

m.reset()              

#%% Parent company problem --> FAC B REVISION 

print("----------------\n\n Parent revision after Facility B \n\n --------------- \n\n") 

# Create the model ------------------------------- 

m_P = gp.Model('Parent P') 

# Decision Variables ----------------------------------------------             

Y = {} 

for f in facilities: 

    Y[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="Y_%s" % (f)) 

X_parent = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_parent[p, f, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="X_parent_%s_%s_%s" % (p, f, c)) 
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deviation = {} 

for f in facilities: 

    deviation[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="deviation_%s" % (f)) 

D = {} #Demand gap 

for c in customers: 

    for p in products: 

        D[p, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="D_%s_%s" % (p, c)) 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    m_P.addConstr(gp.quicksum(raw_need *  X_parent[(p, f, c)]  for p in products for c in customers) <= Y[f] , 

"Supply availability") 

 

# m_P.addConstr(gp.quicksum(Y[f] for f in facilities) <= raw_available, "Supply availability") 

for f in facilities: 

    if f == "A": 

       m_P.addConstr(Y[f] == 28) 

m_P.addConstr(gp.quicksum(Y[f] for f in facilities) <= raw_available, "Supply availability") 

for f in facilities: 

    for p in products: 

        for c in customers: 

            m_P.addConstr(X_parent[(p, f, c)] <= raw_available *  cust_served[c,f]) 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Pos") 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (-1) * (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Neg") 
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for c in customers: 

    for p in products: 

        m_P.addConstr((gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= demand_cust[c] , f"Demand 

constraint {c}")         

        m_P.addConstr(((-1)*gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= (-1)*demand_cust[c] , 

f"Demand constraint {c}") 

# Objective function ----------------------------------------------- 

total_revenue = 0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_revenue += revenue * X_parent[p, f, c]            

total_raw_cost = 0 

for f in facilities: 

    total_raw_cost += cost_raw * Y[f]     

total_manuf_cost = 0      

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_manuf_cost += manuf_cost[f] * X_parent[p, f, c]      

total_co2_cost =0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_co2_cost += cost_emission * X_parent[p, f, c]  

total_deviation = 0 

for f in facilities: 

    total_deviation += weight_deviation_raw* deviation[f] 
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total_gap = 0 

gap_cost= 5 

for c in customers: 

    for p in products: 

        total_gap += weight_demand_fulfillment*gap_cost*D[p,c] 

total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost 

objective =  total_global - total_deviation - total_gap 

profit =  total_global - total_gap 

m_P.setObjective(objective, GRB.MAXIMIZE) 

m_P.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\PARENT problems.lp") 

m_P.setParam('MIPGap', 0.001) 

m_P.setParam('Timelimit', 36000) 

m_P.optimize() 

# Print Y and D variables 

if m_P.status == GRB.OPTIMAL: 

    print("Optimized values for Y and Deviation:") 

    for f in facilities: 

        print(f"Y[{f}] = {Y[f].X}") 

        print(f"deviation[{f}] = {deviation[f].X}") 

         

    for p in products: 

        for f in facilities: 

            for c in customers: 

                print(f"X_parent[{p}, {f}, {c}] = {X_parent[p, f, c].X}") 
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    print("\n\n ---------- \n\nObjective function values:\n") 

    # Calculate total_revenue 

    total_revenue = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # total_revenue += revenue * X_parent[p, f, c].X  ##This is actually not all what they produced but what 

they sell.                  

                if X_parent[p, f, c].X > demand_cust[c]: 

                   total_revenue += revenue * demand_cust[c]   

                else:     

                    total_revenue += revenue * X_parent[p, f, c].X             

     

    # Calculate total_raw_cost 

    total_raw_cost = 0 

    for f in facilities: 

        total_raw_cost += cost_raw * Y[f].X     

    # Calculate total_manuf_cost 

    total_manuf_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_manuf_cost += manuf_cost[f] * X_parent[p, f, c].X     

    # Calculate total_co2_cost 

    total_co2_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 
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                total_co2_cost += cost_emission * X_parent[p, f, c].X     

    # Calculate total_deviation 

    total_deviation = 0 

    for f in facilities: 

        total_deviation += deviation[f].X         

    total_gap = 0 

    gap_cost= 5 

 

    for c in customers: 

        for p in products: 

            total_gap += gap_cost*D[p,c].X   

     

    # Calculate total_global 

    total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost 

     

    # Print the extracted values 

    print(f"Total Revenue: {total_revenue}") 

    print(f"Total Raw Cost: {total_raw_cost}") 

    print(f"Total Manufacturing Cost: {total_manuf_cost}") 

    print(f"Total CO2 Cost: {total_co2_cost}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"Total Deviation (without weight): {total_deviation}") 

    print(f"Total Gap cost (without weight): {total_gap}") 

    print("\n\n ---------- \n\nFacility objective values for global optima:\n") 

    sum_Profit_A_parent = 0 

    for p in products: 

        for f in facilities: 
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            if f == 'A': 

                for c in customers: 

                    sum_Profit_A_parent += ((revenue - manuf_cost[f]) * X_parent[p, f, c].X) 

     

    print(f"Obj. fn. For Facility A (profit): {sum_Profit_A_parent}") 

    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X) 

                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}")  

 

    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X) 

                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}") 
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    sum_Cost_C_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'C': 

                for c in customers: 

                    sum_Cost_C_parent += (cost_emission * X_parent[p, f, c].X)     

    print(f"Obj. fn. For Facility C (Cost): {sum_Cost_C_parent}")     

    print("\n\n ---------- \n\nDifferences between X_parent and X_out variables:\n")     

    differences_found = False  # To track if any differences are found     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # Get the optimized value from the model and the corresponding value from X_out 

                X_parent_val = X_parent[p, f, c].X 

                X_out_val = X_out[p, f, c] 

                 

                # Compare the two values 

                if abs(X_parent_val - X_out_val) > 1e-6:  # Using a small threshold to avoid floating-point issues 

                    print(f"Difference found for [{p}, {f}, {c}]: X_parent = {X_parent_val}, X_out = {X_out_val}") 

                    differences_found = True 

     

    if not differences_found: 

        print("No differences found between X_parent and X_out.")   

     

    # Calculate total_co2_cost 

    total_production = 0 

    for p in products: 
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        for f in facilities: 

            for c in customers: 

                total_production += X_parent[p, f, c].X     

    print(total_production)  

 

    for c in customers: 

        for p in products: 

            if D[p,c].X != 0:  # Checking if the demand gap for customer c is non-zero 

                print(f"Customer {c} for product {p} has a demand gap of {D[p,c].X}") 

 

     # Extract values for Y[A] and Y[B] 

    Y_A_OUT = Y['A'].X 

    Y_B_OUT = Y['B'].X 

    Y_C_OUT = Y['C'].X     

    print(f"Y_A_OUT = {Y_A_OUT}") 

    print(f"Y_B_OUT = {Y_B_OUT}") 

    print(f"Y_C_OUT = {Y_C_OUT}")     

    Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    print("\n\n ----- RAW available after all: ", Y_available)    

     

else: 

    print("Optimization was not successful.") 

m_P.reset()   

#%% facility c 

print("----------------\n\n Facility C \n\n --------------- \n\n") 

Y_A = Y_A_OUT 

Y_B = Y_B_OUT 

Y_C = Y_C_OUT 
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print("\n\n ------------------------\n\n") 

print("Y value for Facility A: " , Y_A) 

print("Y value for Facility B: " , Y_B) 

print("Y value for Facility C: " , Y_C) 

print("----------------") 

i = i + 1 

f_a =0 

f_b=0 

f_c=1 

print(f"Round {i} :") 

# Create the model ------------------------------- 

m = gp.Model('Facility GENERALIZED') 

 

# Decision Variables ---------------------------------------------- 

X = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X[p, f, c] = m.addVar(vtype=GRB.CONTINUOUS, name="X_%s_%s_%s" % (p, f, c)) 

 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    if (f == "A" and f_a == 0) or (f == "B" and f_b == 0) or (f == "C" and f_c == 0): 

        m.addConstr(gp.quicksum(X[p, f, c] for p in products for c in customers) == 0, f"Production at {f} initial 

stage") 

 

if f_a == 1: 
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    Y_A = raw_need * gp.quicksum(X[p, "A", c] for p in products for c in customers)  # Raw material needed 

constraint 

elif f_b == 1: 

    Y_B =  raw_need * gp.quicksum(X[p, "B", c] for p in products for c in customers)  # Raw material needed 

constraint 

elif f_c == 1: 

    Y_C = raw_need * gp.quicksum(X[p, "C", c] for p in products for c in customers)  # Raw material needed 

constraint 

for p in parents: 

    m.addConstr(f_a * Y_A + f_b * Y_B + f_c * Y_C <= 28, "Raw material availability") 

 

if f_a == 1: 

    m.addConstr(gp.quicksum(X[p, "A", c] for p in products for c in customers) <= manuf_cap["A"], "Manufacturing 

capacity at facility A") 

elif f_b == 1: 

    m.addConstr(gp.quicksum(X[p, "B", c] for p in products for c in customers) <= manuf_cap["B"], "Manufacturing 

capacity at facility B") 

elif f_c == 1: 

    m.addConstr(gp.quicksum(X[p, "C", c] for p in products for c in customers) <= manuf_cap["C"], "Manufacturing 

capacity at facility C") 

 

for c in customers: 

    if f_a == 1: 

        if cust_served[c, "A"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'A', c] for p in products) == demand_cust[c] * cust_served[c, "A"],     

               "Demand customer"          

               )  
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        if cust_served[c, "A"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'A', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "A") <= demand_cust[c] * 

cust_served[c, "A"],     

                "Demand customer"          

                )         

    elif f_b == 1: 

        if cust_served[c, "B"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'B', c] for p in products) == demand_cust[c] * cust_served[c, "B"],     

               "Demand customer"          

               )  

        if cust_served[c, "B"] == 1:   

            m.addConstr( 

                gp.quicksum(X[p, 'B', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "B") <= demand_cust[c] * 

cust_served[c, "B"], 

                "Demand customer" 

            ) 

      

    elif f_c == 1: 

        if cust_served[c, "C"] == 0: 

           m.addConstr( 

               gp.quicksum(X[p, 'C', c] for p in products) == demand_cust[c] * cust_served[c, "C"],     

               "Demand customer"          

               )  

        if cust_served[c, "C"] == 1:   
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                    m.addConstr( 

                gp.quicksum(X[p, 'C', c] for p in products) + 

                gp.quicksum(X_out[p,f,c] for p in products for f in facilities if f != "C") >= demand_cust[c] * 

cust_served[c, "C"], 

                "Demand customer" 

            ) 

# Objective function ----------------------------------------------- 

objective = 0 

# Sum profit if a == 1 (for facility A) 

if f_a == 1: 

    sum_Profit_A = gp.quicksum((revenue - manuf_cost[f]) * X[p, f, c] 

                                for p in products 

                                for f in facilities if f == "A" 

                                for c in customers) 

    objective += sum_Profit_A  # Maximize profit for A 

 

# Sum profit if b == 1 (for facility B) 

elif f_b == 1: 

    sum_Profit_B = gp.quicksum(X[p, f, c] * (3 if c == 3 else 1) 

                                for p in products 

                                for f in facilities if f == "B" 

                                for c in customers) 

    objective += sum_Profit_B  # Maximize profit for B 

 

# Sum cost if c == 1 (for facility C) 

if f_c == 1: 

    sum_Cost_C = gp.quicksum(cost_emission * X[p, f, c] 

                              for p in products 
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                              for f in facilities if f == "C" 

                              for c in customers) 

    objective -= sum_Cost_C  # Minimize cost for C 

# Set the objective for the model 

m.setObjective(objective, GRB.MAXIMIZE) 

m.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\FACILITY problems.lp") 

# Set parameters and optimize the model 

m.setParam('MIPGap', 0.001) 

m.setParam('Timelimit', 36000) 

m.optimize() 

print("Round: ", i, "\n")  

if m.status == GRB.OPTIMAL: 

    print("Optimal objective value:", m.ObjVal) 

    # Retrieve solution attributes from the model 

    X_out_raw = m.getAttr('X', X) 

    # Update global_X_out with the current X_out values 

    for key, value in X_out_raw.items(): 

        X_out_raw[key] = value     

    print("X_out_raw updated: ", X_out_raw, "\n\n")     

    # print("X_out updated: ", X_out, "\n\n")     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # X_out[p, f, c] = random.randint(1, 20) 

                X_out[p, f, c] = X_out[p, f, c]  + X_out_raw[p, f, c]  

    print("X_out updated: ", X_out, "\n\n")     
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    print("\n\n ------------------------\n\nSUMMARY OF RESULTS: \n") 

    for p in products: 

        for c in customers: 

            for f in facilities: 

                value = X_out[p, f, c]                 

                if value != 0: 

                    print(f"The value of X[{p}, {f}, {c}] is: {value}")       

    Y_values = {} 

    # Iterate over each facility 

    for facility in facilities: 

        # Calculate Y for the current facility based on the optimized values of the decision variables 

        Y_value = raw_need * gp.quicksum(X_out_raw[p, facility, c] for p in products for c in customers) 

        # Store the calculated Y value for the current facility in the dictionary 

        Y_values[facility] = Y_value 

    # Access the Y values for each facility as needed 

    Y_A_value = Y_values["A"] 

    Y_B_value = Y_values["B"] 

    Y_C_value = Y_values["C"]    

 

    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_value) 

    print("Y value for Facility B: " , Y_B_value) 

    print("Y value for Facility C: " , Y_C_value)     

    Y_A_OUT =  Y_A_value  

    Y_B_OUT =  Y_B_value  

    Y_C_OUT =  Y_C_value  
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    print("\n\n ------------------------\n\n") 

    print("Y value for Facility A: " , Y_A_OUT) 

    print("Y value for Facility B: " , Y_B_OUT) 

    print("Y value for Facility C: " , Y_C_OUT)    

    # Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    # print("\n\n ----- RAW available after all: ", Y_available) 

    # Retrieve the solution from Model A 

    solution = {} 

    for v in m.getVars(): 

        solution[v.varName] = v.x 

# Reset the previously run model 

m.reset()              

#%% Parent company problem --> FAC C REVISION (FINAL REVISION)   

print("----------------\n\n Final Parent revision -- after Facility C \n\n --------------- \n\n") 

# Create the model ------------------------------- 

m_P = gp.Model('Parent P') 

# Decision Variables ----------------------------------------------              

Y = {} 

for f in facilities: 

    Y[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="Y_%s" % (f)) 

X_parent = {} 

for p in products: 

    for f in facilities: 

        for c in customers: 

            X_parent[p, f, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="X_parent_%s_%s_%s" % (p, f, c)) 

deviation = {} 
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for f in facilities: 

    deviation[f] = m_P.addVar(vtype=GRB.CONTINUOUS, name="deviation_%s" % (f)) 

D = {} #Demand gap 

for c in customers: 

    for p in products: 

        D[p, c] = m_P.addVar(vtype=GRB.CONTINUOUS, name="D_%s_%s" % (p, c)) 

# Add Constraints -------------------------------------------------------------- 

for f in facilities: 

    m_P.addConstr(gp.quicksum(raw_need *  X_parent[(p, f, c)]  for p in products for c in customers) <= Y[f] , 

"Supply availability") 

# m_P.addConstr(gp.quicksum(Y[f] for f in facilities) <= raw_available, "Supply availability") 

# for f in facilities: 

#     if f == "A": 

#        m_P.addConstr(Y[f] == 28) 

for f in facilities: 

    if f == "B": 

        m_P.addConstr(Y[f] == 44) 

m_P.addConstr(gp.quicksum(Y[f] for f in facilities) <= raw_available, "Supply availability") 

for f in facilities: 

    for p in products: 

        for c in customers: 

            m_P.addConstr(X_parent[(p, f, c)] <= raw_available *  cust_served[c,f]) 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Pos") 

for f in facilities: 

    m_P.addConstr(deviation[f] >= (-1) * (Y[f] - gp.quicksum(raw_need * X_out[(p, f, c)] for p in products for c in 

customers)), name="Deviation_Constr_Neg") 
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for c in customers: 

    for p in products: 

        m_P.addConstr((gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= demand_cust[c] , f"Demand 

constraint {c}")         

        m_P.addConstr(((-1)*gp.quicksum(X_parent[p, f, c] for f in facilities) + D[p,c] ) >= (-1)*demand_cust[c] , 

f"Demand constraint {c}") 

# Objective function ----------------------------------------------- 

total_revenue = 0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_revenue += revenue * X_parent[p, f, c]            

total_raw_cost = 0 

for f in facilities: 

    total_raw_cost += cost_raw * Y[f]     

total_manuf_cost = 0      

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_manuf_cost += manuf_cost[f] * X_parent[p, f, c]      

total_co2_cost =0 

for p in products: 

    for f in facilities: 

        for c in customers: 

            total_co2_cost += cost_emission * X_parent[p, f, c]  

total_deviation = 0 

for f in facilities: 

    total_deviation += weight_deviation_raw* deviation[f] 
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total_gap = 0 

gap_cost= 5 

for c in customers: 

    for p in products: 

        total_gap += weight_demand_fulfillment* gap_cost*D[p,c] 

total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost 

objective =  total_global - total_deviation - total_gap 

profit =  total_global - total_gap 

m_P.setObjective(objective, GRB.MAXIMIZE) 

m_P.write(r"C:\Users\paula\OneDrive - University of Missouri\PhD\Assistantship\Dr. Li\Distributed 

Manufacturing\Code\PARENT problems.lp") 

m_P.setParam('MIPGap', 0.001) 

m_P.setParam('Timelimit', 36000) 

m_P.optimize() 

# Print Y and D variables 

if m_P.status == GRB.OPTIMAL: 

    print("Optimized values for Y and Deviation:") 

    for f in facilities: 

        print(f"Y[{f}] = {Y[f].X}") 

        print(f"deviation[{f}] = {deviation[f].X}")         

    for p in products: 

        for f in facilities: 

            for c in customers: 

                print(f"X_parent[{p}, {f}, {c}] = {X_parent[p, f, c].X}") 
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    print("\n\n ---------- \n\nObjective function values:\n") 

    # Calculate total_revenue 

    total_revenue = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # total_revenue += revenue * X_parent[p, f, c].X  ##This is actually not all what they produced but what 

they sell.                  

                if X_parent[p, f, c].X > demand_cust[c]: 

                   total_revenue += revenue * demand_cust[c]   

                else:     

                    total_revenue += revenue * X_parent[p, f, c].X    

    # Calculate total_raw_cost 

    total_raw_cost = 0 

    for f in facilities: 

        total_raw_cost += cost_raw * Y[f].X     

    # Calculate total_manuf_cost 

    total_manuf_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_manuf_cost += manuf_cost[f] * X_parent[p, f, c].X     

    # Calculate total_co2_cost 

    total_co2_cost = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_co2_cost += cost_emission * X_parent[p, f, c].X 



110 

 

    # Calculate total_deviation 

    total_deviation = 0 

    for f in facilities: 

        total_deviation += deviation[f].X         

    total_gap = 0 

    gap_cost= 5 

    for c in customers: 

        for p in products: 

            total_gap += gap_cost*D[p,c].X        

    # Calculate total_global 

    total_global = total_revenue - total_raw_cost - total_manuf_cost - total_co2_cost     

    # Print the extracted values 

    print(f"Total Revenue: {total_revenue}") 

    print(f"Total Raw Cost: {total_raw_cost}") 

    print(f"Total Manufacturing Cost: {total_manuf_cost}") 

    print(f"Total CO2 Cost: {total_co2_cost}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"\nTotal Global: {total_global}") 

    print(f"Total Deviation (without weight): {total_deviation}")  

    print(f"Total Gap cost (without weight): {total_gap}") 

    print("\n\n ---------- \n\nFacility objective values for global optima:\n") 

    sum_Profit_A_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'A': 

                for c in customers: 

                    sum_Profit_A_parent += ((revenue - manuf_cost[f]) * X_parent[p, f, c].X) 
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    print(f"Obj. fn. For Facility A (profit): {sum_Profit_A_parent}") 

    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X)                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}")   

 

    sum_Profit_B_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'B': 

                for c in customers: 

                    if c == 3: 

                        sum_Profit_B_parent += (3 * X_parent[p, f, c].X)                         

                    else: 

                        sum_Profit_B_parent += (1 * X_parent[p, f, c].X) 

    print(f"Obj. fn. For Facility B (profit): {sum_Profit_B_parent}")      

    sum_Cost_C_parent = 0 

    for p in products: 

        for f in facilities: 

            if f == 'C': 

                for c in customers: 

                    sum_Cost_C_parent += (cost_emission * X_parent[p, f, c].X) 
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    print(f"Obj. fn. For Facility C (Cost): {sum_Cost_C_parent}")     

    print("\n\n ---------- \n\nDifferences between X_parent and X_out variables:\n")     

    differences_found = False  # To track if any differences are found     

    for p in products: 

        for f in facilities: 

            for c in customers: 

                # Get the optimized value from the model and the corresponding value from X_out 

                X_parent_val = X_parent[p, f, c].X 

                X_out_val = X_out[p, f, c]                 

                # Compare the two values 

                if abs(X_parent_val - X_out_val) > 1e-6:  # Using a small threshold to avoid floating-point issues 

                    print(f"Difference found for [{p}, {f}, {c}]: X_parent = {X_parent_val}, X_out = {X_out_val}") 

                    differences_found = True     

    if not differences_found: 

        print("No differences found between X_parent and X_out.")     

    # Calculate total_co2_cost 

    total_production = 0 

    for p in products: 

        for f in facilities: 

            for c in customers: 

                total_production += X_parent[p, f, c].X     

    print(total_production)     

    for c in customers: 

        for p in products: 

            if D[p,c].X != 0:  # Checking if the demand gap for customer c is non-zero 

                print(f"Customer {c} for product {p} has a demand gap of {D[p,c].X}") 
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     # Extract values for Y[A] and Y[B] 

    Y_A_OUT = Y['A'].X 

    Y_B_OUT = Y['B'].X 

    Y_C_OUT = Y['C'].X     

    print(f"Y_A_OUT = {Y_A_OUT}") 

    print(f"Y_B_OUT = {Y_B_OUT}") 

    print(f"Y_C_OUT = {Y_C_OUT}")     

    Y_available = raw_available - Y_A_OUT - Y_B_OUT - Y_C_OUT 

    print("\n\n ----- RAW available after all: ", Y_available)    

else: 

    print("Optimization was not successful.") 

# m_P.reset()  
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