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Abstract 

 Safety within the transportation sector has long been a concern for researchers and 

industry stakeholders. With high injury rates in the transportation sector and an increase in 

expenditure toward transportation projects, state departments of transportation put in place key 

performance indicators aiming for a safer workforce. To do so, root causes of safety incidents 

must be studied to help prevent/mitigate future incidents. Previous studies addressed this using 

various analytical approaches; however, they have either failed to account for both internal and 

external factors affecting safety, or conducted a methodology requiring extensive, confidential 

data that is difficult to retrieve. The goal is to decipher combinations of internal and external 

reasons behind occupational injuries in the transportation sector by utilizing top-level data 

without the need to access detailed confidential records. This was accomplished through a 

systematic methodological approach, employing a funneled multiple linear regression (MLR), 

that offered a novel way of evaluating the influence of different variable combinations on safety 

outcomes. The methodology was composed of (1) identifying independent and dependent 

variables from publicly available data by the Bureau of Labor Statistics, (2) studying 

multicollinearity, (3) conducting feature selection, and (4) applying a funneled MLR approach to 

examine all possible variable combinations. The findings included five high-performing MLR 

models composed of critical combinations of variables impacting safety incidents in the 

transportation sector. This research contributes actionable insights for developing targeted 

interventions aimed at mitigating safety risks and enhancing workplace safety within the 

transportation sector. 
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Chapter 1 Introduction 

The construction industry is one of the most hazardous industries in the world (Chiang et 

al., 2018). An important segment of the industry is the transportation sector. The need to build 

safe and efficient transportation projects is an essential part of an economy’s growth and health. 

This can be seen in the new Infrastructure Investment and Jobs Act (IIJA) signed by President 

Biden in November 2021 with a $1.2 trillion budget for transportation and infrastructure 

(USDOT, 2023a). To maintain the resilience of the transportation sector, recruiting and retaining 

a highly skilled workforce is key (Metro et al., 2021). Following such, the ultimate goal would 

be to increase the well-being and productivity of the retained workforce to achieve project 

success (Karthick et al., 2021). A vital aspect to account for is the safety of the workforce since 

projects rely heavily on human power (Ayhan & Tokdemir, 2020a). This is necessary due to the 

organizational and technical issues that safety incidents cause (Hadikusumo et al., 2017). The 

transportation sector is no different. In fact, one of the strategic objectives of the U.S. 

Department of Transportation (USDOT) 2022-2024 Performance Plan, is to maintain the “health 

safety and well-being” of transportation workers (USDOT, 2023b). One of the key performance 

indicators set in the 2022-2024 plan, is to decrease the transportation worker injury rate by 2026.  

Analyzing occupational injury data is necessary to be proactive in eliminating the 

reason(s) behind injuries. Marji et al. (2023) have recommended consistently analyzing injury 

data to avoid hazards. Following the same logic, understanding how safety accidents occur has 

been extensively advocated for in the literature (Assaad & El-adaway, 2021a; Ayhan & 

Tokdemir, 2020a; Gibb et al., 2014; Y. Li & Bai, 2008). While singling out primary factors 

contributing to injuries offers a swift and convenient approach to analysis, it may not offer a 

comprehensive perspective necessary for effectively addressing and mitigating hazards. 
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Meaning, that the causes for safety incidents must be looked at as a combination of contributing 

factors since injuries in the construction sector are complex and multi-causal (Suraji et al., 2001). 

To retrieve such results, an ideal level of detail for data must be available to analyze. However, 

due to the confidential nature of the data and as per the U.S. Privacy Act of 1974, the full data 

disclosure may not be easily accessible for detailed analysis. For example, one of the most 

renowned sources of injury cases is the BLS Injuries, Illnesses, and Fatalities (IIF) program, but 

it only provides top-level rates or counts (Choe & Leite, 2017).  

Existing studies employ various analytical methods to retrieve causes of safety incidents 

in the transportation sector, but their scope and depth often prove short of something critical. A 

fundamental obstacle arises due to the limited availability of safety data, often attributed to 

security concerns, which impedes a thorough understanding. Despite scholars accessing data and 

presenting insightful discoveries, many studies primarily concentrate on individual safety 

incidents, disregarding the intricate interplay of various factors and the importance of examining 

interdependencies (Koulinas et al., 2023). Additionally, studies with unrestricted access to safety 

data frequently overlook both internal and external safety concerns, as seen in research on work 

zone crashes focusing solely on traffic accidents without considering other onsite risks such as 

falls (Das et al., 2023). Even studies attempting to circumvent this issue by gathering data 

through surveys (Marji et al., 2023) still encounter limitations due to differences in perception 

and memory constraints (Ghosh et al., 2023). 

Based on the presented gap, the goal of this research is to decipher combinations of 

internal and external reasons behind occupational injuries in the transportation sector by utilizing 

top-level data without the need to attain access to detailed confidential records. The goal shall be 

accomplished by identifying internal and external sources of safety issues in the transportation 
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sector and establishing a multi-tier methodology that can provide comprehensive deductions. 

Such deductions shall proactively contribute to prolonged workforce retainage and enhance the 

industry’s image. Further, it promotes practicality and facilitates the implementation of findings 

in safety data. 
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Chapter 2 Background Information 

2.1 Construction Sector Safety-Related Studies 

In a general sense, construction-related safety incidents have been extensively 

approached throughout the literature. Some studies achieve a proactive approach by trying to 

identify and avoid factors that cause safety accidents. For example, Ayhan & Tokdemir (2020) 

have created a model to predict outcomes of construction safety accidents and then provided 

recommendations for avoidance. Fass et al. (2017) focused on fall and struck-by accidents by 

analyzing 519 incident reports in the Arabian Gulf region to explore the key factors affecting 

safety incidents and how to avoid them. Moreover, Assaad & El-adaway (2021) examined 100 

fatal accident case files to determine the most critical combination of causes for fatal accidents 

and to avoid them. All of the above studies utilized different approaches, but their goal was to 

identify and eliminate root causes of safety accidents in construction. Another aspect of risk 

management is mitigating safety incidents when they cannot be avoided due to the nature of 

construction projects. Mohandes et al. (2022) focused on the risk aspect of safety and aimed to 

enhance how construction projects may better deal with and mitigate safety-related risks. While 

Muzafar (2021) has opted to include building information technology (BIM) to accurately 

identify safety-related risks on site. 

A more in-depth approach to identifying causes of safety issues is exploring human 

cognition and how it affects safety behavior on site. Liu et al. (2023) conducted a review and 

discussion about the various antecedents that affect a worker’s cognition during safety issues and 

recommended that construction managers utilize the understanding of such antecedents to reduce 

unsafe behavior. Hu et al. (2023) have corroborated the aforementioned research through a state-

of-the-art review and emphasized how safety interventions must be personalized for workers 
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through understanding their cognitive status. Discussion in the literature has taken cognition a 

step further by using an electroencephalogram (EEG) wearable device to capture the brain 

activity of workers responding to hazards (Zhou & Liao, 2023). The authors were capable of 

relying on human-machine collaboration to formulate a tool that predicts the cognitive response 

of workers to hazards. Using the same principle, various studies have utilized EEG to study the 

cognitive behavior of workers to prevent, predict, or mitigate safety issues (Jeon & Cai, 2022, 

2023; Mehmood et al., 2023).  

Other researchers have chosen to focus on the imperative aspect of safety imposed by 

organizations through safety training. Safety training was a significant development in the 

construction industry in recognizing safety hazards and safety-related risks (Namian et al., 2016). 

However, safety training may not always be convey safety as a big issue for construction 

workers (Loosemore & Malouf, 2019). Fu et al. (2024) used eye-tracking technology to see the 

effect of different cues on effective safety training. Meanwhile, Gao et al. (2019) have concluded 

that computer-aided safety training is more effective than traditional methods. That is why 

computer-aided training was taken to another level by introducing Industry 4.0, and including 

virtual reality to create an enhanced and engaging safety training experience (Bader et al., 2024; 

Dang et al., 2024; Rokooei et al., 2023).  

As seen above, the discussion of safety in the construction realm is vast due to its 

significance; indeed, studies expand beyond the areas discussed. For example, some studies 

choose to focus on migrant workers due to their high susceptibility to safety accidents (Al-

Bayati, Eiris, et al., 2023; Lyu et al., 2023; Nielsen et al., 2023). Other studies revolve around 

resolving a certain type of incident such as falling from heights (Tözer et al., 2024; Zermane et 

al., 2023), struck-by incidents (Bobadilla et al., 2014; H. Kim et al., 2023), fatal incidents (Park 
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et al., 2020; Zermane et al., 2023), etc. Meanwhile, researchers may opt to look at the bigger 

picture by studying specific types of projects that are deemed to be relatively more hazardous. 

Some examples include high-rise buildings (Manzoor et al., 2021), tunnels and bridges 

(Spangenberg et al., 2005; Ye et al., 2023), and highways (Nnaji et al., 2020). While the 

discussion of safety in the construction sector may contain various divisions, for the purpose of 

this study, the focus shall be projects in the transportation sector.  

2.2 Transportation Sector Safety-Related Studies 

The topic of safety in the transportation sector is one of great interest and importance due 

to its hazardous conditions compared to other sectors. The transportation sector workforce is 

constantly exposed to passing traffic, extreme conditions, and heavy moving equipment (Al-

Shabbani et al., 2018). This kind of exposure may result in injuries or even fatalities within the 

workplace. The amount of occupational injuries and illnesses per total number of employees in 

the transportation sector is 1.5 times more than in the buildings sector (BLS, 2023b); thus, 

focusing on occupational injuries occurring amongst the transportation sector workforce is 

justified. With the increase of governmental spending in the transportation sector reaching a 

projected 2024 budget of $145 billion, (U.S. Department of Transportation, 2024), safety 

incidents are more inclined to increase. The statistic was corroborated by Harris et al. (2022) 

through a simple frequency analysis of safety incidents in the transportation sector using data 

from the Bureau of Labor Statistics (BLS) and the National Highway Traffic Safety 

Administration (NHTSA). The alarming trends in injuries have created the need to understand 

and analyze the causes of safety incidents to protect the transportation workforce.  

Three types of analysis can be commonly seen in the transportation sector safety-related 

studies: descriptive, predictive, and prescriptive (Cote, 2021). Descriptive analytics involves 
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identifying trends and describing what happened through association algorithms or clustering 

analysis; while predictive, allows for building models that can predict future events from 

historical data such as using artificial neural networks (Williams, 2011). The prescriptive 

analysis advises on how to move forward (Balali et al., 2020). The prescriptive analysis method 

can incorporate descriptive and predictive methods and serve as grounds for further discussion or 

be used on its own. This section offers a detailed discussion on literature addressing all four data 

analytic methods. 

A simple approach to descriptive analysis was undertaken by Al-Bayati et al. (2023). The 

authors attained 75 reports of fatal construction incidents reported by the Fatality Assessment 

and Control Evaluation (FACE) Program. Descriptive content analysis was done to identify and 

rank the external and internal contributors during road works. The authors later proceeded to 

provide prescriptive recommendations. However, it must be noted that this simple technique has 

not allowed for identifying possible combinations of reasons that might have led to the safety 

incidents.  

Several research efforts utilized a descriptive method called the association rule 

algorithm to find a combination of factors that cause work zone crashes (Chammout et al., 2024; 

Das et al., 2023; Weng et al., 2016). These researchers utilized data related to work zone crashes 

that were readily available at sources such as the Michigan work zone crash data, the Fatality 

Analysis Reporting System, the US National Highway Traffic Safety Administration, and others. 

The data is usually exhaustive enough to allow for association rules to be conducted in a 

meaningful manner. Valcamonico et al. (2022) provided another novel approach to describing 

work zone crashes by using natural language processing (NLP) to classify accidents. 

Nevertheless, investigating work zone crashes solely delves into the various situations that result 
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in work zone traffic accidents, which is crucial but does not offer a complete perspective. These 

investigations often overlook internal factors occurring on the site related to construction 

activities, such as falls from heights or injuries caused by explosives. Other attempts have been 

made in descriptive analytics when data was not available and Delphi questionaries were utilized 

(Hallowell et al., 2011). However, a prevailing issue in questionnaires is the reliability of the 

data. Yet, some researchers have had access to exhaustive data on more safety incidents in 

transportation construction sites than just work zone crashes. An example of this is a study 

conducted by Y. A. Kim et al. (2013) who analyzed accidents in Korea using analysis of 

variance and cross-tabulation to retrieve the effect of different factors on highway safety 

incidents. This study utilized cross-tabulation to retrieve the relative importance of factors that 

can cause a safety issue. All observed factors were related to the surroundings, and the 

characteristics of the workers were not accounted for, which could be highly influential (Lyu et 

al., 2023). Another study on railway construction demonstrated the opposite by focusing only on 

worker behavior and not the surroundings (Guo et al., 2021). Therefore, exploring both the 

behavior and worker characteristics that led to an accident as well as the surroundings, in other 

words the internal and external factors, is important. Research done by Tong et al. (2020) has 

also utilized an association rule algorithm to retrieve a combination of causes leading to highway 

construction accidents in China while taking into account external and internal factors. In this 

study, data accessibility was not an issue, allowing for a detailed analysis, and the focus was 

targeted towards highway construction without accounting for other major project types in the 

transportation sector.   

The second most popular method in the literature is the prescriptive method. Under this 

method, authors have observed specific safety issues and proposed solutions through a 



9 

 

framework, a decision support system, new tools, technology integration, etc. Esmaeili & 

Hallowell (2013) incorporated common safety risks into a decision support system to enhance 

the integration of the safety risks into the project schedule. However, no attention was provided 

to providing enhancement measures for the workforce. On the other hand, Nnaji et al. (2018) 

proposed a decision-making system to select the optimal safety technologies for highway 

construction, with a focus directed towards transportation incidents. Due to the hazardous nature 

of transportation projects, it is important to consider all aspects when redesigning safety training 

for the highway construction workforce (Ammar & Dadi, 2023). While safety training often 

accounts for factors under control of the workforce, safety incidents may occur that include 

mishappenings out of the workers’ control. For example, poor visibility at night is an inevitable 

aspect of the job, which is why Nnaji et al. (2020) focused on worker visibility at nighttime. The 

authors proposed and evaluated the effects of wearable lighting systems as a solution. On the 

same topic of visibility, Arditi et al. (2004) explored and recommended the best safety vests 

concerning luminance. While focusing on critical aspects to solve is commendable in a practical 

sense, there still exists a need to explore what combination of happenings would exacerbate the 

occurrence of safety incidents. Bad nighttime visibility may exacerbate safety incidents even 

more when coupled with a certain occupation or a certain gender. Therefore, this may alter the 

prescriptive solution provided. More recent sophisticated approaches attempting to solve this 

integrated technologies such as augmented reality and digital twins. Sabeti et al. (2021) utilized 

augmented reality to create a real-time notification system to notify highway construction 

workers of any upcoming hazards. Ye et al. (2023) diverted attention to tunnel projects and used 

digital twins to virtually simulate early hazard warnings and provide solutions through 

emergency response plans. However, the above solutions rely on predefined hazards recognized 
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individually such as upcoming car accidents rocks or falling in tunnels. To provide more 

heuristic warning signs there must be rigorous acknowledgment of critical factors causing them.   

Lastly, predictive analytics, while prominent under the study of safety in the construction 

sector (Ayhan & Tokdemir, 2020a; Bobadilla et al., 2014; Ghodrati et al., 2018; Zermane et al., 

2023), tailoring it to the transportation sector is an emerging area (Bortey et al., 2022). 

Alqatawna et al. (2021) and Li & Yu (2021) created models to predict highway traffic accidents 

but did not address any internal construction-related issues. Predictive models can be beneficial 

in becoming proactive but would require extensive and detailed data sets. Regardless of the 

analytic method utilized, all authors had the common aim of preventing or mitigating future 

safety issues.  

The literature on safety in the transportation sector exposes significant gaps in addressing 

comprehensive safety concerns. While prevailing studies utilize three common analytical 

approaches—descriptive, predictive, and prescriptive—their coverage and depth often fall short. 

A primary challenge emerges regarding security limiting the availability of safety data that 

hinders a complete understanding of transportation incidents. Despite scholars accessing data and 

presenting insightful findings, inherent limitations compromise the overall comprehensiveness of 

results. Notably, many studies focus on individual safety incidents, neglecting the intricate 

interplay of multiple factors. For instance, the significance of two non-critical reasons occurring 

simultaneously might surpass that of a top-ranked issue alone; thus, examining interdependencies 

is crucial (Koulinas et al., 2023). Furthermore, studies with unrestricted safety data often 

overlook both internal and external safety issues, as evident in research on work zone crashes 

that concentrate solely on traffic accidents without considering other on-site risks like falls. 

Other studies tried to evade the problem by collecting data through surveys (Marji et al., 2023), 
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though they still faced the limitation of perception differences and memory restrictions (Ghosh et 

al., 2023). Moreover, a prevailing issue is the narrow focus on specific project types within the 

transportation sector, overlooking the broader context. 
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Chapter 3 Methodology  

This section introduces a systematic approach for investigating factors contributing to 

nonfatal safety incidents in transportation using Multiple Linear Regression (MLR). By utilizing 

data from the BLS’s SOII and integrating internal and external variables impacting safety 

outcomes, the methodology aims to identify high-performing models with various combinations 

of variables. Unlike traditional approaches seeking a single optimal MLR model, this method 

explores multiple models to understand safety dynamics better. It proposes a novel methodology 

for systematically evaluating the impact of different variable combinations on safety using MLR, 

maintaining statistical thresholds. This approach offers an alternative to association rules, 

allowing exploration of influential factor combinations without the need for individual datasets. 

Figure 3.1 provides a simple, heuristic demonstration of the four stages. Stage 1 is identifying the 

independent and dependent variables for the MLR. Stage 2 is studying the correlation between 

the independent variables to retrieve the number of variables to use: feature size. Stage 3 is 

conducting two types of feature selection methods to rank the variables based on their influence 

on the independent variable. Finally, stage 4 consists of evaluating the independent variables 

using MLR through a funneling effect. Statistical analysis in stages 1, 2, and 4 was conducted 

using JASP 0.18.1 software, while stage 3 was conducted using Python. 
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Figure 3.1 Research Methodology 

 

3.1 Stage 1: Identification of Variables  

To establish the variables, the BLS SOII data was retrieved for the case and 

demographics injuries under the transportation sector were identified as 237310 Highway, Street, 

and Bridge construction. The SOII is a survey conducted by the BLS to gather work-related 

injuries or illnesses that go beyond first aid treatment (BLS, 2023c). The said data has been used 

to observe trends, patterns, and frequency by various literature (Dong et al., 2013; Harris et al., 

2022); however, as mentioned previously, this research has utilized the data using a different 

approach. Initially, two reports were generated that encompassed the count of injuries and the 

rate of injuries. The former was used for the independent variables while the latter was used for 

the dependent variable.  
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The number of illnesses and demographics reported by the BLS are available from 2011 

to 2020 and are divided into different cases and demographics. This research has accounted for 

nine major relevant divisions that are composed of external and internal factors: gender, age, 

occupation, length of service with employer, race, event/exposure, day of the week, time of the 

day, and hours worked. Even though the BLS reports six other divisions, they were not 

considered by the authors since they do not account for aspects present before the incidents or 

features and are instead classified as the aftermath of the injury. An example of such would be 

the “nature of injury” or the “part of body affected”; these divisions would not explain reasons 

behind safety incidents. Under each major division, there are subdivisions; for example, the 

length of service division is divided into less than three months, three months to 11 months, one 

year to five years, and more than five years. However, this would mean the number of 

independent variables would be too much and difficult to manage; therefore, to be efficient and 

retrieve meaningful results, the subdivisions were grouped as in Alexander et al. (2017). Sanni et 

al. (2021) stressed the importance of avoiding the asymmetric distribution of groups; therefore, 

descriptive statistics were used to group subdivisions according to the median. Accordingly, the 

median was chosen to group subdivisions according to the central tendency of the values 

(Cooksey, 2020). Figure 3.2 demonstrates an example of the conducted grouping where the 

accumulative sum of the subadvisors was plotted, and the median formulated the breaking point 

where groups were made. This was done for all divisions to retrieve a final list of independent 

variables (count of illnesses and injuries for every grouped subdivision) under various divisions. 

Every variable would attain 10 data points from 2011 to 2020.  
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Figure 3.2 Grouping Subdivisions of Independent Variables 

 

The second report is the rate of injuries and illnesses in the transportation sector. It is the 

number of injuries and illnesses per 100 full-time workers and calculated using the number of 

injuries and illnesses over the total hours worked by all employees during the calendar year 

multiplied by 200,000, which is the base for 100 equivalent full-time workers (BLS, 2023a). 

Utilizing safety rates as independent variables is a strategy utilized by various researchers 

(Alexander et al., 2017; Ghodrati et al., 2018). The rates were also obtained from the available 

years, 2011-2020, and were used as the dependent variable. Accordingly, dependent and 

independent variables would have 10 data points to conduct an MLR analysis; this number of 

data points is sufficient as per the 10-15 established range of minimum points stated by Harrell 

(2001) and Ghodrati et al. (2018). However, it must be noted that the SOII does attain a major 

limitation as critiqued and discussed by the (BLS, 2023c) in that there is evidence of a possible 

undercount. This could be due to poor record-keeping by employers, failure to capture injuries 

and illnesses with long onset, as well as excluding self-employed and private household workers. 



16 

 

However, since an undercount might affect both the dependent and independent variables 

similarly, the limitation would not have a major effect on the validity of the results yielded. 

3.2 Stage 2: Studying Variable Correlation  

The second stage involves studying the multicollinearity between the independent 

variables through Pearson’s correlation test. This is a nonparametric test that yields numbers 

between -1 and 1 where the higher the absolute value the stronger the linear relation. 

Construction management literature addressing MLR has highlighted that the presence of highly 

correlated independent variables would lead to an inflation of the model’s performance (Y. 

Zhang et al., 2017). Therefore, dealing with multicollinearity is a critical prerequisite to avoid 

reporting a false combination of factors that affect the rate of safety incidents in the 

transportation sector. Two common approaches to deal with multicollinearity are Least Absolute 

Shrinkage and Selection Operator (LASSO) regression and Variance Inflation Factor (VIF). 

Tong et al. (2021) have utilized LASSO to deal with inflation and defined it as a method suitable 

for feature selection that enhances the prediction capability of the model when independent 

variables have high multicollinearity. However, as previously mentioned, the goal of this 

research is to examine the highly influential combination(s) of variables on the rate of safety 

incidents in the transportation sector and not to predict the rate. Therefore, an approach similar to 

Arora et al. (2023) and Garg & Misra (2021) was utilized where the high multicollinearity results 

from the Pearson correlation test in this stage were further dealt with by using VIF to eliminate 

variables that may inflate results when constructing the model. The VIF approach shall be further 

explained in stage 4 describing the application of MLR. Moreover, this stage also resulted in 

retrieving the maximum number of variables used to start evaluating the model, a process 

referred to by Salama & El-Gohary (2016) as feature size selection. Meaning, how many 
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independent variables can be used as a starting point for the model to avoid a computational error 

in the regression model (Daoud, 2017) by creating a smaller amount of predominant feature 

variables (Hua et al., 2007). This was done by determining the number of highly correlated 

variables in the Pearson correlation matrix to avoid having too much multicollinearity that 

prohibits the model from running.  

3.3 Stage 3: Feature Selection 

Stage 2 resulted in the number of variables for conducting MLR; Stage 3 was conducted 

to select from those variables. This was done through feature selection, which is simply a 

reduction of the independent variables to ones that would yield a high-performing model without 

overfitting (Ashtab & Ryoo, 2022). Feature selection methods can either be classified as 

“wrapper methods” or “filter methods”. Wrapper methods provide the best-performing subset of 

variables through machine learning, while filter methods rank the variables using statistical tests 

conducted with raw information (Idowu & Lam, 2020). This research has utilized both of the 

aforementioned methods since there are varying opinions regarding the superiority of either 

method. Nnamoko et al. (2014) stated that wrapper methods are superior due to their machine-

learning abilities, while Hastie et al. (2009) and Bolón-Canedo et al. (2013) have criticized 

wrapper approaches due to learning bias and generalization ability.  

The filter method chosen was the chi-squared technique due to its promising effects on 

the performance of subsequent models (Jootoo & Lattanzi, 2017) and due to its application in 

construction research (Bidgoli & Naseriparsa, 2012; Salama & El-Gohary, 2016). The chi-

squared technique involves ranking the independent variables by their chi-squared statistics (𝜒𝜒2), 

which is a measure that indicates how much the observed counts of a particular independent 

variable deviate from the expected counts if the independent and dependent variables are not 
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related (Jootoo & Lattanzi, 2017). Further, the wrapper method chosen is the recursive feature 

elimination (RFE) method due to its high computational power and its adaptable implementation 

(Dhal & Azad, 2022) as well as its successful application in a wide variety of construction 

research (Awada et al., 2021; Chang et al., 2023; Jeong et al., 2024). RFE involves building a 

machine learning model using all variables and then iteratively removing the least important 

ones until a stoppage criteria (Thakkar & Lohiya, 2021). The machine learning model used under 

RFE is a gradient boost classifier (GBC), a technique where iterations rely on adding decision 

trees and stops when no improvement to the model is reached This technique is known to have a 

highly reliable performance opposed to other methods (Wong et al., 2021). Overall, by the end of 

this stage, both methods yielded a ranked list of top-performing variables. Then, the number of 

variables taken from each was the feature size identified in Stage 2. This has produced two 

different combinations of factors that would theoretically be of high influence on the rate of 

safety incidence in the transportation sector.  

3.4 Stage 4: Iterative MLR through a Funneling Effect  

Two MLR models were created where each model's selected variables/features were the 

results of the chi-squared and RFE method; further, the number of variables or feature size was 

limited to that determined in Stage 2. Figure 3.3 provides a flowchart of the process undertaken 

to create the two MLR models. Initially, the MLR model is run using all variables selected from 

stages 2 and 3. VIF was used in this research to reduce high multicollinearity. It quantified how 

much the variance of an estimated regression coefficient was increased due to multicollinearity; 

high VIF values indicated that a predictor variable may be highly correlated with other predictors 

in the model (Song & Kroll, 2012). If variables attained VIF values higher than 10, the one with 

the highest VIF value was eliminated (Idowu & Lam, 2020; Seo et al., 2024). After the variable 
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with the highest VIF was eliminated, the model was run again and the same VIF process was 

repeated until a model was retrieved where none of the variables had a VIF value greater than 10.  

Finally, the model fit was then evaluated using the ANOVA test to make sure that the 

model significantly explained the outcome variable (Arora et al., 2023). If the test’s P-value was 

less than 0.05, it indicated a good-fit model (Lokesha et al., 2023). The adjusted R-squared and 

final model variables wer erecorded and models that attained an adjusted R-squared higher than 

0.7 were kept (Lokesha et al., 2023). However, if the model did not pass the ANOVA test, all 

variables were added back and stepwise backward elimination was conducted. Meaning, that the 

variables were removed according to their effect on the ANOVA P-value (Jelodar et al., 2022) 

and VIF was evaluated for the variables. This iterative process was applied to the initial two sets 

of variables, yielding two refined models characterized by distinct variable combinations. 

Consequently, the authors obtained two models demonstrating strong fits, each representing a 

unique set of factors significantly influencing safety within the transportation industry. However, 

eliminating variables in the process meant that some variables were not studied. Since this 

research requires studying all possible combinations, the authors introduced the funneling effect.  
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Figure 3.3 MLR Model Process 

 

The funneling effect took all eliminated variables from the first two MLR models and 

created further good-fit models. The models may not perform better than the first two, but they 

would satisfy good fit model criteria and thus variable combinations for such models could not 

be ignored. In fact, the criticality of the upcoming combinations on safety issues may not be as 

severe but are affecting variables that cannot be ignored. Figure 3.4 provides a representation of 

the funneling effect using an example of eight independent variables under three different 
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divisions. As seen, the funneling effect started from the results of the first two MLR models 

created: funnel level 1. From there, unused variables from each division were identified and a list 

of variable combinations was created. Combinations were created with one variable from every 

group. This approach mimics being able to study every internal/external factor causing safety 

issues together. An MLR model was run for every combination using the approach discussed in 

figure 3.4. The next level of the funnel was reached by repeating the process of removing used 

variables, creating variable combinations, and conducting MLR until all variables were observed. 

By the end of this stage, every funnel level would have MLR models with a combination of 

internal and external variables that affected the rate of transportation safety incidents.  
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Figure 3.4 Funneling Effect 
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Chapter 4 Results 

4.1 Stage 1: MLR Variables  

As discussed in the previous chapter, the total number of divisions was nine. However, 

before grouping, there were a total of 65 subdivisions. Having 65 independent variables would 

not be practical; therefore, by adopting the median method, the authors were capable of attaining 

two groups of subdivisions under every division. The only exception was the division related to 

the “Event or exposure” and “Occupation”. After evaluating the groups created, the authors 

found that grouping the different events, exposures, and occupations would be too generalized 

and it is an aspect that must be evaluated with details. Table 4.1 presents the resulting 

independent and dependent variables. There were 22 independent variables (subdivisions) that 

belonged to nine different divisions (internal and external factors). They were further used in the 

MLR stage to observe how influential a group of different factors is on the safety incident rate in 

the transportation sector.  
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Table 4.1 MLR Variables 

Variable Division Subdivision Notation 

Independent 
Variables 

Gender Men X1 
Women X2 

Age ≤44 X3 
>44 X4 

Occupation 
Construction and Extraction X5 

Installation, maintenance, and repair X6 
Transportation and material moving X7 

Length of service 
with employer 

<1 year X8 
≥1 year X9 

Race or ethnic 
origin 

White X10 
African American or Hispanic X11 

Event or exposure 

Transportation incidents X12 
Fires/explosions & Exposure to harmful 

substances or environments X13 

Falls, slips, trips X14 
Contact with object, equipment X15 

Overexertion and bodily reaction X16 

Day of Week Weekend X17 
Weekday X18 

Time of Day 12:01 PM - 12:00 AM X19 
12:01 AM - 12:00 PM X20 

Hours Worked ≤8 X21 
>8 X22 

Dependent 
Variable Incident Rate Y 

 

4.2 Stage 2: Feature Size   

This stage involved examining the correlation of the 21 independent variables and 

yielded the feature size needed to start the MLR model. Figure 4.1 is the resulting correlation 

matrix where an overall high correlation is present between the variables. The most notable 

variables are X1 (males in the transportation sector), X3 (workers under the age of 44), X5 

(occupation of construction and extraction), X7 (less than one year of service with the employer), 

X9 (white ethnicity), X15 (events of overexertion and bodily reaction), X17 (working 
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weekdays), X19 (working from 12:00 AM - 12:00 PM), and X20 (working less than eight hours). 

The combination of variables together did not mean anything at this point regarding their 

combined impact on safety incidents in the transportation sector. Because their occurrence 

together in an MLR model did not yield reliable results, they were probably eliminated when 

observing their VIF. However, standing out as variables with high correlations indicated that 

their occurrence was not independent of each other. Therefore, while an MLR model was created 

with the above combination, it could not be ignored as a group of factors that would coexist 

when a safety accident occurs. This was a limitation of utilizing the MLR to retrieve various 

combinations, but would be further addressed when all possible combinations were retrieved 

from the MLR results. For the time being, the feature size was retrieved by counting the number 

of variables with moderate to negligible correlation with more than one variable, which is any 

value less than 0.7 (Acharya et al., 2024). The result was a maximum feature size of 11 different 

variables. 

 

 

Figure 4.1 Pearson Correlation Matrix 
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4.3 Stage 3: Feature Elimination  

The feature elimination was conducted using the sklearn library in Python for the chi-

squared and RFE methods. Table 4.2 shows the results of the ranked variables using both 

methods. As per the results of stage 2, only the top 11 independent variables from each ranking 

were utilized to create the first two MLR models. Ranking in both models was different for the 

seven variables. This was expected since RFE utilizes machine learning to eliminate weak 

variables while chi-squared utilizes statistical tests by observing every independent variable with 

the dependent. This means that the chi-squared method may not have accounted for inflation due 

to high multicollinearity and would require more elimination of variables when creating the 

MLR model as opposed to the RFE model. 

 

Table 4.2 Feature Selection 
Ranking RFE Chi-Squared 

1 X9 X22 
2 X2 X10 
3 X10 X9 
4 X15 X15 
5 X13 X16 
6 X17 X12 
7 X20 X20 
8 X12 X5 
9 X6 X1 
10 X4 X3 
11 X21 X18 
12 X14 X2 
13 X22 X21 
14 X3 X6 
15 X5 X14 
16 X11 X7 
17 X7 X4 
18 X8 X13 
19 X16 X17 
20 X18 X8 
21 X19 X19 
22 X1 X11 
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4.4 Stage 4: MLR Results 

The final section of the results demonstrates all MLR models attained. Figure 4.2 

demonstrates the independent variables used at every funnel level (every rectangle represents a 

variable in a single division), the MLR models retrieved, and the number of variables within 

each model: there was a total of three funnel levels. The first level involved 22 independent 

variables, 11 for each model, and after following the MLR procedure set forth above, two high-

performing MLR models were yielded. The eliminated variables were then taken, and an 

assortment was formulated that encompassed different combinations where one variable was 

selected from every division as demonstrated in figure 4.2. Twelve different combinations were 

retrieved and MLR was conducted on all of them. This resulted in three different top-performing 

MLR models. Finally, the unused variables were used as input into funnel level three, which 

attained one combination yielding one high-performing MLR model. It is noteworthy that 

studying one variable from every division provided this methodology with the logical inference 

through statistical methods that attributes affect the rate of safety incidents in the transportation 

sector. Meaning, in this context, saying that both females and males together (X1 & X2) with a 

certain occupation affect the rate of safety incidents would not have much bearing on the 

required corrective action. 
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Figure 4.2 Funnel MLR Results 

 

As discussed in the methodology section, the method must be statistically sound by 

observing the criteria threshold that formulates a good-performing model. Table 4.3 presents the 

adjusted R-squared, the ANOVA test P-value, and the variables’ VIF value for all models. All R 

values are above 0.7, all P values are below 0.05, all VIF Values are below 10, and all variables 

have been studied. 
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Table 4.3 MLR Model Performance 

Model Adjusted R-Squared ANOVA P-Value VIF Values 

MLR 1 0.826 0.038 

X2 4.08 
X9 2.654 
X10 5.379 
X12 2.104 
X17 3.67 
X20 4.189 

MLR 2 0.963 0.001 

X5 4.843 
X9 2.115 
X10 2.704 
X16 5.112 
X22 2.565 

MLR 3 0.965 0.005 

X1 5.415 
X3 6.1 
X7 1.169 
X8 2.818 
X13 2.113 
X19 2.011 

MLR 4 0.83 0.009 

X7 1.064 
X8 2.46 
X15 1.389 
X18 2.921 

MLR 5 0.778 0.017 

X1 4.111 
X4 1.639 
X8 2.471 
X13 1.529 

MLR 6 0.745 0.024 

X6 1.004 
X11 1.428 
X14 1.788 
X21 1.744 

 

Finally, to put the variables into a divisional context, the various combinations are 

demonstrated in figure 4.3 from most to least impacting on the safety incidents based on the R-

value for the MLR model. The upcoming chapter encompasses a detailed discussion relevant to 

the individual combinations.  
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Figure 4.3 Factors Impacting Safety Rate 
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Chapter 5 Deciphering Safety Challenges 

This section is divided into separate discussions of every MLR from most to least 

impacting on safety incidents based on the R-value of the model.  

5.1 MLR 3  

The first combination involves individual factors recognized as highly influential as 

mentioned separately in the literature but their coexistence is yet to be deemed as critical. 

Namian et al. (2022) have recently concluded that it is not enough to study age as the sole 

variable impacting safety, meaning one cannot make the judgment of a worker being more prone 

to safety incidents based on their inexperience alone. This study highlights that men under the 

age of 44 employed in transportation and material moving roles face a heightened risk of fire and 

explosions, particularly those with less than one year of service with their employer. The 

combination of relatively inexperienced workers due to age and due to a short length of time 

working with an employer can be very critical (Choi et al., 2020).  

A person’s working hours can have an effect on safety, which largely depends on their 

occupation. The BLS (2024) provides an outlook on material moving machine operators’ work 

schedules where “materials are shipped around the clock, some work overnight shifts.” This can 

lead to fatigue-induced errors and amplify the risk of accidents (Koc et al., 2023). Consequently, 

morning shifts fall in the time frame identified as most likely for fire accidents to occur on 

construction sites (J.S. Kim & Kim, 2018). The nature of the work, often involving handling 

flammable materials or operating machinery prone to sparking, also increases the likelihood of 

such incidents. The nature of work in transportation and material moving roles significantly 

contributes to the heightened risk of fire and explosions in the workplace. These occupations 

frequently involve handling flammable materials and operating machinery prone to sparking, 
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thus increasing the likelihood of such incidents (Hassanain et al., 2022). Workers in these roles 

may regularly come into contact with substances such as gasoline, propane, or industrial 

chemicals, which pose inherent fire hazards. Additionally, the operation of heavy machinery, 

such as forklifts or conveyor systems, can generate sparks or friction that are a source of heat and 

may ignite flammable materials in the vicinity (Campbell, 2023). The combination of these 

factors creates a volatile working environment where the potential for fire and explosions is 

heightened, necessitating stringent safety protocols and risk management strategies to mitigate 

these risks effectively. The combination of youthful exuberance, limited tenure with the 

employer, and a demanding schedule underscores the importance of robust safety training, 

vigilant supervision, and comprehensive risk assessment protocols to safeguard these workers 

against fire and explosion hazards while operating equipment and moving material.   

5.2 MLR 2 

The second most critical combination focuses on the portion of the workforce that has 

had more experience working for a certain employer. This may add more familiarity to the work 

and procedures which can reduce the risk of exposure to safety incidents. However, as 

individuals accumulate experience and familiarity with their job responsibilities, workplace 

environment, and colleagues, they often develop a greater sense of competence and comfort in 

their roles. This increased confidence can translate into a willingness to undertake extended work 

hours or more demanding shifts, which could eventually lead to overexertion of the worker 

(Caruso et al., 2006).  

Workers in the transportation sector, particularly those with more than one year of service 

with an employer, face significant risks of overexertion and bodily reaction, especially when 

required to work extended shifts exceeding eight hours. Research indicates that prolonged hours 



33 

 

of physical labor, common in transportation roles such as truck driving or loading and unloading 

freight, significantly increase the likelihood of musculoskeletal injuries due to overexertion 

(Everett, 1999). Moreover, the demanding nature of the job, which often involves repetitive tasks 

and heavy lifting, exacerbates the risk of strains, sprains, and other bodily reactions among 

workers (Dong et al., 2019; Smith et al., 2023; X. Wang et al., 2017). The aforementioned are 

found under the feature of construction and extraction occupation in this model which are 

occupations that lead to overexertion (D. Wang et al., 2015).  

The above-mentioned hazards are particularly pronounced for white workers in the 

transportation sector (Dong et al., 2019). This finding is stimulating since among laborers, white 

workers are more likely to attain a higher level of education (BLS, 2021) and are most likely to 

exert less physical activity at work (Saffer et al., 2013). However, studies have highlighted 

disparities in occupational safety outcomes based on race, with white workers often showing 

more emotional disparity in injury-related situations (Bhandari & Hallowell, 2017), more 

susceptible to physical fatigue due to heat (Karthick et al., 2022), and are more likely to feel the 

need to rigorously prove themselves among other ethnicities, which increases their likelihood to 

work more hours and lead to overexertion (Paap, 2006). Addressing these disparities requires a 

comprehensive approach that considers the specific needs and experiences of white workers, 

including implementing ergonomic interventions, providing adequate rest breaks during 

extended shifts, and promoting a culture of safety and well-being in the workplace. While the 

mention of working more than eight hours and overexertion may be anticipated, the newly added 

perspective within this research is its criticality of occurrence when workers are of a white race 

and have worked with the employer for more than a year.  
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5.3 MLR 4 

This model contains four different features, two  of which are the same as the first model: 

less than one year of experience and having an occupation involving transportation and moving 

material. While these features are still a critical combination with MLR 3, they become less 

critical when coupled with working weekdays and workers exposed to contact with objects and 

equipment. Nevertheless, it is important to shed light on the third most critical combination of 

features. The fast-paced nature of weekday operations in transportation and movement roles may 

lead to rushed or hurried tasks, further heightening the likelihood of workplace incidents (Han et 

al., 2014). These individuals often find themselves in roles that involve direct contact with heavy 

machinery, such as forklifts, cranes, or conveyor systems (Cho & Gai, 2014). The lack of 

experience with the employer coupled with the demands of the job increases the risk of accidents 

and injuries related to equipment malfunctions, mishandling of materials, or improper use of 

machinery. Given the lack of familiarity with safety protocols and proper handling procedures 

among workers with less than one year of service, there is an urgent need for comprehensive 

training programs and stringent safety measures to mitigate the risks.  

5.4 MLR 1 

This model presents the female gender as opposed to males used in other models. 

Females compose only 10.9% of the entire construction sector workforce (BLS, 2022), yet 

gender is still an important feature of the fourth most important combination of variables. This 

disproportion in the number of females versus the serious effect on safety incidents is another 

noteworthy aspect of this research’s results. Females are more prone to transportation 

incidents(Tork, 2008). Hasan & Kamardeen (2022)  attribute this to a “higher number of females 

on current construction sites working as road flaggers.”  
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Moreover, these incidents are exacerbated from 12:00 am to 12:00 pm on a weekend 

since drivers do not expect work zones to be occupied at night time, causing them to speed and 

have less visibility (K. Zhang & Hassan, 2019). Weekend crashes were also found to be more 

severe (Osman et al., 2019), which can be attributed to an increase in drunk drivers (W. Zhang & 

Zhang, 2020). Additionally, the disruption of circadian rhythms due to working overnight may 

exacerbate these risks, as the body's natural tendency to rest conflicts with the demands of the 

job (Barger et al., 2012).  

Finally, females working during the weekend after midnight who are being exposed to 

transportation incidents contain two previously discussed features of having more than one year 

of service with an employer and being white. The repetition of this combination emphasizes that 

white workers working with an employer for an extended period in the construction industry can 

potentially diminish a worker's cautiousness. Long-tenured employees may become overly 

familiar with their tasks and surroundings, leading to complacency and a reduced tendency to 

adhere strictly to safety protocols. This phenomenon, known as "risk homeostasis", suggests that 

individuals adjust their behavior based on perceived levels of risk, potentially taking greater risks 

when they feel overly confident or accustomed to their work environment (McKinnon, 2012). 

Prolonged exposure to the same tasks and conditions may lead to a false sense of security, 

causing workers to underestimate potential dangers or overlook warning signs, further 

compromising their cautiousness.  

5.5 MLR 5 

The relationship between injury incidents and age is inversely proportional where 

younger workers are more prone to incidents (Chen et al., 2016). This lies in consensus with the 

findings of this model where ages greater than 44 are presented as less critical to safety in the 
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transportation sector as opposed to the younger age group that was present in the most critical 

model. As mentioned, accounting for age alone is unreliable, so this model attains three other 

variables discussed under the first model: males with less than one year of service who are 

exposed to fires or explosions and harmful substances. The repetition reiterates how critical this 

combination is but was ranked less critical due to the age group feature. These individuals, often 

new to the job or recently hired, may lack the necessary training and familiarity with safety 

protocols. The hierarchical structure often observed in construction crews, where experienced 

workers of an older age group in the company may hold positions of authority over newer 

recruits, can create barriers to effective communication and hinder the transfer of essential safety 

knowledge and skills. 

5.6 MLR 6 

Workers in the transportation sector, particularly those engaged in installation, maintenance, 

and repair tasks, who are of Hispanic or Black ethnicity and have worked a shift of fewer than 

eight hours, are disproportionately exposed to risks of falls and slips. The first notable aspect 

would be the nature of the event occurring when workers have worked less than an eight-hour 

shift. Chan et al. (2008) examined workers engaged in repair, maintenance, and alterations 

additions while working from heights. One of the conclusions was that time of day was an 

important factor, and falls seemed to occur more frequently during the afternoon from 14:01-

16:00. This means, that the worker would not have had a chance to complete an eight-hour shift 

(Kines, 2002). While this type of exposure to an event may be serious within the construction 

industry (Hu et al., 2011), it may not be abundant in transportation (Lipscomb et al., 2006).  

The last feature present within this combination would be workers of African American 

or Hispanic ethnicity. This was because falls were found to be caused by negligence which is 
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among the top four reasons for Hispanic workers’ causes of safety incidents (Loayza Chahuayo, 

2011). While research about Hispanics in construction is abundant, the African American 

ethnicity does not seem to play a major role in construction literature. In fact, Brigham et al. 

(2012) have highlighted the lack of the African American community working in the 

construction sector. This does not negate that the presence of this ethnicity has contributed to 

causing fall and slip safety incidents in the transportation sector. While it is not clear why, it 

must be prevented when included with the amalgam of factors discussed in this model. 
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Chapter 6 Conclusions and Recommendations  

In conclusion, this research highlights the critical combinations of variables influencing 

safety incidents in the transportation sector, stressing the need for tailored interventions to 

effectively mitigate risks. Utilizing a methodological approach involving data retrieval from 

publicly available sources, factor elimination, and funnel-based MLR analysis, five significant 

combinations of factors impacting safety incident rates were identified and discussed. The 

practical contribution of this research lies in its identification and analysis of critical 

combinations of variables that significantly impact safety incidents in the transportation sector, 

thereby informing targeted interventions and preventive measures to enhance workplace safety. 

State DOTs would benefit from evading such critical combinations to observe lower safety 

incident rates. While considering all factors forming one combination is important, there were 

factors identified to have a higher impact: 

• Newly hired individuals often face challenges due to a lack of training, particularly 

when they have less than one year of experience with the employer. This limited 

tenure may result in insufficient time for comprehensive onboarding and safety 

training programs, leaving workers ill-prepared to navigate the hazards of their new 

roles. 

• Older individuals entering a new job may encounter safety issues stemming from 

hierarchical clashes with younger colleagues. This intergenerational dynamic can 

create tensions and communication barriers, particularly in workplaces where 

younger workers may hold supervisory roles or possess advanced technical skills. 

• Women in the sector, particularly those placed as flagmen, may face unique safety 

challenges due to the nature of their tasks. Being positioned in potentially hazardous 
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environments exposes them to risks associated with passing vehicles and heavy 

machinery. 

• White men with over one year of service with an employer may face challenges 

related to complacency and overconfidence. Prolonged tenure can lead to a false 

sense of security, causing workers to underestimate dangers or overlook safety 

protocols. 

• The time of day for Hispanic workers plays a significant role in falls within the 

transportation sector, necessitating heightened safety measures such as increased 

supervision during the afternoon to mitigate risks. 

• The underrepresentation of African Americans in safety research within the 

transportation sector is a critical aspect to consider. Limited research fails to capture 

the full extent of their experiences and the factors contributing to safety incidents, 

potentially leading to disparities in safety outcomes and ineffective interventions. 

The above underscores the importance of addressing both internal and external dynamics 

to promote a culture of safety excellence. The research contributes substantially to transportation 

safety knowledge by introducing a novel methodology and offering actionable insights for 

industry stakeholders, policymakers, and safety professionals. By deciphering the interplay of 

internal and external factors contributing to occupational injuries, the research provides practical 

insights to enhance worker well-being and safety culture. Additionally, identifying critical 

combinations such as challenges faced by new hires, hierarchical clashes, and specific safety 

risks for women and minority groups emphasizes the need for diverse demographic 

considerations in safety interventions. Moving forward, State DOTs must recognize these 

findings' significance and implement targeted interventions to mitigate safety risks, prioritizing 
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worker well-being and adopting multifaceted safety management approaches for a safer 

transportation work environment nationwide. In this endeavor, practical contributions to State 

DOTs are paramount. State DOTs can facilitate partnerships between government agencies, 

industry stakeholders, and advocacy groups to address the extracted safety concerns 

collaboratively ensuring the well-being of all workers in the industry. 
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