Development of New Design Guidelines for Protection Against Erosion at Bridge Abutment – Phase III

University

University of Iowa

Principal Investigator

George Constantinescu (george-constantinescu@uiowa.edu)

Total Project Cost

$149,750.50

Funding Type

2016 USDOT

Start Date

12/13/2019

End Date

08/31/2020

Agency ID or Contract Number

69A3551747107

Abstract

The present research proposes the use of a numerically-based approach to develop improved design formulas for minimum riprap stone size for protection against erosion of spill-through abutments. Spill-through abutments are very common at small bridges where abutments are placed on the floodplain. The mean flow fields predicted using fully 3-D RANS simulations are used to estimate the maximum bed shear stress over the riprap layer and the critical Froude number corresponding to the shear-failure entrainment threshold for the riprap stone. During the first year, the numerically-based approach was validated for the case of wing-wall abutments placed in a straight channel. During the second year, a new two-parameter formula was proposed for riprap design at wing-wall abutments. The new formula accounts for the influence of the nondimensional floodplain width and radius of curvature of the channel on the critical Froude number at which riprap shear failure occurs. During the third year, a comprehensive parametric study will be conducted that will provide the data needed to understand how channel curvature, floodplain width and relative length of the spill-through abutment influence the peak bed shear stress over the riprap regions. The main goal will be to develop a multi-parameter formula for riprap design at spill-through abutments placed in straight and curved channels as a function of the nondimensional floodplain width, ratio of abutment length to floodplain width, nondimensional riprap stone size and radius of curvature of the channel. These series of simulations will also allow better understanding the limitations of presently available riprap design formulas proposed for spill-through abutments placed in straight channels. Recommendations will be made for inclusion of the new design formula in future versions of HEC-23.

Deliverables

Download the Final Report

Related Phases Phase I: Development of New Design Guidelines for Protection Against Erosion at Bridge Abutments and Embankments - Phase I

Phase II: Development of New Design Guidelines for Protection Against Erosion at Bridge Abutments and Embankments – Phase II

Phase IV: Development of New Design Guidelines for Protection Against Erosion at Bridge Abutments - Phase IV

Phase V: Development of new design guidelines for protection against erosion at bridge abutments - Phase V